Tomografía computarizada de haz cónico, una imagen diagnóstica de alta resolución en endodoncia

  • Martha Lucely Duarte Universidad Santo Tomás
  • Bibiana Yorley Blanco Universidad Santo Tomás
Palabras clave: Tomografía computarizada de haz cónico, endodoncia, imágenes diagnósticas

Resumen

La tomografía computarizada de haz cónico es un examen diagnóstico que utiliza un scanner para obtener imágenes en tercera dimensión, los parámetros más relevantes que se deben tener en cuenta en el equipo son: el tamaño del campo visual, tiempo de exposición, voltaje de corriente del tubo y grados de rotación del cabezote alrededor del paciente. Esta técnica permite observar imágenes en tres planos, reduciendo la superposición de estructuras anatómicas, identificando con detalle la morfología interna del diente, alteraciones como perforaciones, zonas de reabsorción, lesiones periapicales, fracturas radiculares y la identificación de lesiones de origen no odontogénico. Entre sus desventajas se encuentra resolución espacial baja, dispersión y endurecimiento del haz por la presencia de estructuras metálicas como coronas, implantes y núcleos intrarradiculares. Es importante resaltar que una imagen en tres dimensiones brinda mayor fiabilidad y seguridad para el diagnóstico, tratamiento y pronóstico del tratamiento de endodoncia.

Biografía del autor

Martha Lucely Duarte, Universidad Santo Tomás

Facultad de Odontología, Universidad Santo Tomás, Bucaramanga

Bibiana Yorley Blanco, Universidad Santo Tomás
Facultad de Odontología, Universidad Santo Tomás, Bucaramanga

Referencias

1. Matherne RP, Angelopoulos C, Kulild JC, Tira D. Use of cone-beam computed tomography to identify root canal systems in vitro. J Endod. 2008;34(1):87-89. doi: 10.1016/j.joen.2007.10.016.

2. Patel S, Dawood A, Whaites E, Pitt Ford T. New dimensions in endodontic imaging: part 1. Conventional and alternative radiographic systems. Int Endod J. 2009;42(6):447-462. 10.1111/j.1365-2591.2008.01530.x.

3. Weber M, Stratz N, Fleiner J, Schulze D, Hannig C. Possibilities and limits of imaging endodontic structures with CBCT. Swiss Dent J. 2015;125(3):293-311.

4. Nair MK, Nair UP. Digital and advanced imaging in endodontics: A Review. J Endod. 2007;33(1):1-6. doi: 10.1016/j.joen.2014.10.020.

5. Yamamoto K, Ueno K, Seo K, Shinohara D. Development of dento‐maxillofacial cone beam X‐ray computed tomography system. Orthod Craniofac Res. 2003;6(s1):160-162. doi: 10.1034/j.1600-0544.2003.249.x.

6. Abella F, Morales K, Garrido I, Pascual J, Duran-Sindreu F, Roig M. Endodontic applications of cone beam computed tomography: case series and literature review. G Ital Endod. 2015;29(2):38-50.

7. Yang L, Chen X, Tian C, Han T, Wang Y. Use of cone-beam computed tomography to evaluate root canal morphology and locate root canal orifices of maxillary second premolars in a Chinese subpopulation. J Endod. 2014;40(5):630-634. doi: 10.1016/j.gien.2015.08.002.

8. Arai Y, Tammisalo E, Iwai K, Hashimoto K, Shinoda K. Development of a compact computed tomographic apparatus for dental use. Dentomaxillofac Radiol. 1999;28(4):245-248. DOI: 10.1038/sj/dmfr/4600448.

9. Patel S. New dimensions in endodontic imaging: Part 2. Cone beam computed tomography. International Endodontic Journal. 2009;42(6):463-475. doi: 10.1111/iej.12732.

10. Ludlow JB, Laster WS, See M, Bailey L’J, Hershey HG. Accuracy of measurements of mandibular anatomy in cone beam computed tomography images. Oral Surg Oral Med Oral Pathol Oral Radiol Endot. 2007;103(4):534-542. doi: 10.1016/j.tripleo.2006.04.008.

11. Hashem D, Brown JE, Patel S, Mannocci F, Donaldson AN, Watson TF et al. An in vitro comparison of the accuracy of measurements obtained from high- and low-resolution cone-beam computed tomography scans. J Endod. 2013;39(3):394-397. doi: 10.1016/j.joen.2012.11.017.

12. Ludlow JB, Timothy R, Walker C, Hunter R, Benavides E, Samuelson DB et al. Effective dose of dental CBCT-a meta analysis of published data and additional data for nine CBCT units. Dentomaxillofac Radiol. 2015;44(1):20140197. 10.1259/dmfr.20140197.

13. Neelakantan P, Subbarao C, Subbarao CV. Comparative evaluation of modified canal staining and clearing technique, cone-beam computed tomography, peripheral quantitative computed tomography, spiral computed tomography, and plain and contrast medium-enhanced digital radiography in studying root canal morphology. Journal of Endodontics. 2010;36(9):1547-1551. doi: 10.1016/j.joen.2010.05.008.

14. Safi Y, Hosseinpour S, Aziz A, Bamedi M, Malekashtari M, Vasegh Z. Effect of amperage and field of view on detection of vertical root fracture in teeth with intracanal posts. Iranian endodontic journal. 2016;11(3):202. doi: 10.7508/iej.2016.03.011.

15. Robinson S, Czerny C, Gahleitner A, Bernhart T, Kainberger FM. Dental CT evaluation of mandibular first premolar root configurations and canal variations. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;93(3):328-332. doi: 10.1067/moe.2002.120055.

16. Dula K, Bornstein MM, Buser D, Dagassan-Berndt D, Ettlin DA, Filippi A et al. SADMFR guidelines for the use of Cone-Beam Computed Tomography/ Digital Volume Tomography. Swiss Dent J. 2014;124(11):1169-1183.

17. Patel S, Durack C, Abella F, Shemesh H, Roig M, Lemberg K. Cone beam computed tomography in endodontics - a review. Int Endod J. 2015;48(1):3-15. doi: 10.1111/iej.12270.

18. Bornstein MM, Scarfe WC, Vaughn VM, Jacobs R. Cone beam computed tomography in implant dentistry: a systematic review focusing on guidelines, indications, and radiation dose risks. Int J Oral Maxillofac Implants. 2014;29Suppl:55-77. doi: 10.11607/jomi.2014suppl.g1.4.

19. Ozaki Y, Watanabe H, Nomura Y, Honda E, Sumi Y, Kurabayashi T. Location dependency of the spatial resolution of cone beam computed tomography for dental use. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116(5):648-655. doi: 10.1016/j.oooo.2013.07.009.

20. Panjnoush M, Kheirandish Y, Kashani PM, Fakhar HB, Younesi F, Mallahi M. Effect of exposure parameters on metal artifacts in cone beam computed tomography. Journal of dentistry (Tehran, Iran). 2016;13(3):143.

21. Zhang D, Chen J, Lan G, Li M, An J, Wen X et al. The root canal morphology in mandibular first premolars: a comparative evaluation of cone-beam computed tomography and micro-computed tomography. Clin Oral Investig. 2017;21(4):1007-1012. doi: 10.1007/s00784-016-1852-x.

22. Talwar S, Utneja S, Nawal RR, Kaushik A, Srivastava D, Oberoy SS. Role of Cone-beam computed tomography in diagnosis of vertical root fractures: A systematic review and meta-analysis. J Endod. 2016;42(1):12-24. doi: 10.1016/j.joen.2015.09.012.

23. Parker JM, Mol A, Rivera EM, Tawil PZ. Cone-beam computed tomography uses in clinical endodontics: Observer variability in detecting periapical lesions. J Endod. 2017;43(2):184-187. doi: 10.1016/j.joen.2016.10.007.

24. Bechara B, Alex McMahan C, Moore WS, Noujeim M, Teixeira FB, Geha H. Cone beam CT scans with and without artefact reduction in root fracture detection of endodontically treated teeth. Dentomaxillofac Radiol. 2013;42(5):20120245. doi: 10.1259/dmfr.20120245.

25. Bechara BB, Moore WS, McMahan CA, Noujeim M. Metal artefact reduction with cone beam CT: an in vitro study. Dentomaxillofac Radiol. 2012;41(3):248-253. doi: 10.1259/dmfr/80899839.

26. Chang E, Lam E, Shah P, Azarpazhooh A. Cone-beam computed tomography for detecting vertical root fractures in endodontically treated teeth: A Systematic Review. J Endod. 2016;42(2):177-185. doi: 10.1016/j.joen.2015.10.005. Epub 2015 Nov 26.

27. Kamburoğlu K, Yılmaz F, Gulsahi K, Gulen O, Gulsahi A. Change in periapical lesion and adjacent mucosal thickening dimensions one year after endodontic treatment: Volumetric cone-beam computed tomography assessment. J Endod. 2017;43(2):218-224. doi: 10.1016/j.joen.2016.10.023.

28. Rodríguez G, Abella F, Duran-Sindreu F, Patel S, Roig M. Influence of cone-beam computed tomography in clinical decision making among specialists. Journal of Endodontics. 2017;43(2):194-199. doi: 10.1016/j.joen.2016.10.012.

29. Burklein S, Heck R, Schafer E. Evaluation of the root canal anatomy of maxillary and mandibular premolars in a selected german population using cone-beam computed tomographic data. J Endod. 2017;43(9):1448-1452. doi: 10.1016/j.joen.2017.03.044.

30. Zhang R, Wang H, Tian Y-, Yu X, Hu T, Dummer PMH. Use of cone-beam computed tomography to evaluate root and canal morphology of mandibular molars in chinese individuals. Int Endod J. 2011;44(11):990-999. doi: 10.1111/j.1365-2591.2011.01904.x.

31. Helvacioglu-Yigit D, Demirturk Kocasarac H, Bechara B, Noujeim M. Evaluation and reduction of artifacts generated by 4 different root-end filling materials by using multiple cone-beam computed tomography imaging settings. J Endod 2016;42(2):307-314. doi: 10.1016/j.joen.2015.11.002.

32. Vasconcelos KF, Nicolielo L, Nascimento MC, Haiter‐Neto F, Boscolo FN, Van Dessel J et al. Artefact expression associated with several cone‐beam computed tomographic machines when imaging root filled teeth. Int Endod J. 2015;48(10):994-1000. doi: 10.1111/iej.12395.

33. Demirturk Kocasarac H, Helvacioglu Yigit D, Bechara B, Sinanoglu A, Noujeim M. Contrast-to-noise ratio with different settings in a CBCT machine in presence of different root-end filling materials: an in vitro study. Dento maxillo facial radiology. 2016;45(5):20160012. doi: 10.1259/dmfr.20160012.

34. Venskutonis T, Plotino G, Juodzbalys G, Mickevičienė L. The importance of cone-beam computed tomography in the management of endodontic problems: a review of the literature. J Endod. 2014;40(12):1895-1901. doi: 10.1016/j.joen.2014.05.009.

35. Corbella S, Del Fabbro M, Tamse A, Rosen E, Tsesis I, Taschieri S. Cone beam computed tomography for the diagnosis of vertical root fractures: a systematic review of the literature and meta-analysis. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;118(5):593-602. doi: 10.1016/j.oooo.2014.07.014.

36. Patel S, Dawood A, Wilson R, Horner K, Mannocci F. The detection and management of root resorption lesions using intraoral radiography and cone beam computed tomography - an in vivo investigation. Int Endod J. 2009;42(9):831-838. doi: 10.1111/j.1365-2591.2009.01592.x.

37. Celikten B, Uzuntas CF, Kurt H. Multiple idiopathic external and internal resorption: Case report with cone-beam computed tomography findings. Imaging Sci Dent. 2014;44(4):315-320. doi: 10.5624/isd.2014.44.4.315.

38. Kamburoğlu K, Kurşun S, Yuksel S, Oztaş B. Observer ability to detect ex vivo simulated internal or external cervical root resorption. J Endod. 2011;37(2):168-175. doi: 10.1016/j.joen.2010.11.002.

39. Khojastepour L, Moazami F, Babaei M, Forghani M. Assessment of Root Perforation within Simulated Internal Resorption Cavities Using Cone-beam Computed Tomography. J Endod. 2015;41(9):1520-1523. doi: 10.1016/j.joen.2015.04.015.

40. Miles DA, Danforth RA. Cone beam computed tomography: From capture to reporting. Dental Clinics of North America. 2014;58(3):x. doi: 10.1016/j.cden.2014.05.001.
Publicado
2018-12-12
Cómo citar
Duarte, M., & Blanco, B. (2018). Tomografía computarizada de haz cónico, una imagen diagnóstica de alta resolución en endodoncia. Ustasalud, 15, 44-49. https://doi.org/https://doi.org/10.15332/us.v15i0.2080
Sección
Artículos de Revisión