FINITE ELEMENTS ANALYSIS OF STRESS PEAKS IN IMPLANTS WITH DIFFERENT LENGTHS

  • Camilo Andrés Villabona López Federal University of Santa Cataria
  • Marco Antônio Amorin Vasco University of Zaragoza
  • Iara Augusta Orsi University of São Paulo
  • Carla Cecilia Alandia-Róman University of São Paulo
  • Antônio Carlos Cardoso University of Santa Catarina
  • Osvaldo Luis Bezzon University of São Paulo
Palabras clave: análisis del elemento finito, prótesis e implantes, ingeniería

Resumen

Objetivo: este estudio se propuso evaluar, mediante el método de análisis de los elementos finitos, los valores de pico de tensión en los implantes con diferentes longitudes sometidos a carga axial y oblicua.
Métodos y materiales: a partir de una simulación virtual en tercera dimensión se modeló un implante de conexión hexagonal externa con longitudes de 5,5 mm, 10 mm, 18 mm. El ensayo fue realizado bajo aplicación de carga axial y oblicua de 60 N en la superficie oclusal de la corona protética - proveniente de una reconstrucción virtual de tomografía computarizada. La simulación fue analizada numérica y cualitativamente de acuerdo con las tensiones principales (tracción-compresión).
Resultados: los resultados mostraron que la carga oblicua induce mayores picos de tensión en comparación con la carga axial. Las tensiones se localizaron en las primeras roscas del implante y región periimplantar. El implante de menor longitud presentó mayor pico de tensión (100%). Los valores de pico de tensión disminuyen en promedio un 28,3% a medida que aumenta la longitud del implante de 5 a 18 mm y el 7,75% de 10 a 18 mm.
Conclusión: aunque los valores de pico de tensión disminuyen a medida que aumenta la longitud de 5,5 mm a 18mm; de 10 a 18mm los valores no tienen influencia porcentual en los picos de tensión.
[Villabona CA, Vasco MA, Orsi IA, Alandia-Róman CC, Cardoso AC, Bezzon OL. Finite elements analysis of stress peaks in implants with different lengths. Ustasalud 2015;14:13-18]

Biografía del autor

Camilo Andrés Villabona López, Federal University of Santa Cataria
Master in Oral Rehabilitation-University of São Paulo, Ribeirao Preto, Brazil; Post Graduate Doctorate in Implantology-Federal University of Santa Cataria, Florianópolis
Marco Antônio Amorin Vasco, University of Zaragoza
PHd in Oral Rehabilitation-University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Post Doctorate in Bioengineering at the University of Zaragoza
Iara Augusta Orsi, University of São Paulo
Full Professor -School of Dentistry, Department of Dental Materials and Prosthodontics - University of São Paulo, Ribeirão Preto, São Paulo
Carla Cecilia Alandia-Róman, University of São Paulo
Research coordinator – FACIT, Faculty of Science of Tocantins. PHd in Oral Rehabilitation-University of São Paulo, Ribeirão Preto
Antônio Carlos Cardoso, University of Santa Catarina
Full Professor -School of Dentistry - Federal University of Santa Catarina, Santa Catarina
Osvaldo Luis Bezzon, University of São Paulo
Full Professor -School of Dentistry- University of São Paulo, Ribeirão Preto

Referencias

1. Yokoyama S, Wakabayashi N, Shiota M, Ohyama T. The influence of implant location and length on stress distribution for three-unit implant-supported posterior cantiléver fixed partial dentures. J Prosthet Dent. 2004;91(3):234-40.

2. Akça K, Iplikçioğlu H. Finite element stress analysis of the effect of short implant usage in place of cantilever extensions in mandibular posterior edentulism. J Oral Rehabil. 2002;29(4):350-6.

3. Clelland NL, Ismail YH, Zaki HS, Pipko D. Three-dimensional finite element stress analysis in and around the Screw-Vent implant. Int J Oral Maxillofac Implants. 1991;6(4):391-8.

4. Holmgren EP, Seckinger RJ, Kilgren LM, Mante F. Evaluating parameters of osseointegrated dental implants using finite element analysis--a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction. J Oral Implantol. 1998;24(2):80-8.

5. Lotti, R. S. et al. Aplicabilidade científica do método dos elementos finitos. R. Dental Press. Ortodon. Ortop. Facial 2006;11:35-43.

6. Wakabayashi N, Ona M, Suzuki T, Igarashi Y. Nonlinear finite element analyses: advances and challenges in dental applications. J Dent. 2008;36(7):463-71.

7. Geng JP, Xu DW, Tan KB, Liu GR. Finite element analysis of an osseointegrated stepped screw dental implant. J Oral Implantol. 2004;30(4):223-33.

8. Huang HK, Ledley RS. Numerical experiments with a linear force-displacement tooth model. J Dent Res. 1969;48(1):32-7.

9. Byrne D, Houston F, Cleary R, Claffey N. The fit of cast and premachined implant abutments. J Prosthet Dent. 1998;80(2):184-92.

10. Binon PP. Implants and components: entering the new millennium. Int J Oral Maxillofac Implants. 2000;15(1):76-94.

11. Gross MD, Nissan J. Stress distribution around maxillary implants in anatomic photoelastic models of varying geometry. Part II. J Prosthet Dent. 2001;85(5):450-4.

12. Maeda Y, Satoh T, Sogo M. In vitro differences of stress concentrations for internal and external hex implant-abutment connections: a short communication. J Oral Rehabil. 2006;33(1):75-8.

13. Pilliar RM, Sagals G, Meguid SA, Oyonarte R, Deporter DA. Threaded versus porous-surfaced implants as anchorage units for orthodontic treatment: three-dimensional finite element analysis of peri-implant bone tissue stresses. Int J Oral Maxillofac Implants. 2006;21(6):879-89.

14. Novaes AB, Barros RR, Muglia VA, Borges GJ. Influence of interimplant distances and placement depth on papilla formation and crestal resorption: a clinical and radiographic study in dogs. J Oral Implantol. 2009;35(1):18-27.

15. De Morais Alves da Cunha, T. et al. Comparison of Fit Accuracy between Procera® Custom Abutments and Three Implant Systems. Clin. Implant Dent. Relat. Res. Dec, 2010.

16. Degidi M, Nardi D, Piattelli A. One abutment at one time: non-removal of an immediate abutment and its effect on bone healing around subcrestal tapered implants. Clin Oral Implants Res. 2011;22(11):1303-7.

17. Holmes DC, Diaz-Arnold AM, Leary JM. Influence of post dimension on stress distribution in dentin. J Prosthet Dent. 1996;75:140-7.

18. Menicucci G, Mossolov A, Mozzati M, Lorenzetti M, Preti G. Tooth-implant connection: some biomechanical aspects based on finite element analyses. Clin Oral Implants Res. 2002;13:334-41.

19. Zarone F, Sorrentino R, Apicella D, Valentino B, Ferrari M, Aversa R, et al. Evaluation of the biomechanical behavior of maxillary central incisors restored by means of endocrowns compared to a natural tooth: a 3D static linear finite elements analysis. Dent Mater. 2006;22:1035-44.

20. Benzing UR, Gall H, Weber H. Biomechanical aspects of two different implant-prosthetic concepts for edentulous maxillae. Int J Oral Maxillofac Implants. 1995;10:188-98.

21. Eskitascioglu G, Usumez A, Sevimay M, Soykan E, Unsal E. The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: A three-dimensional finite element study. J Prosthet Dent. 2004;91(2):144-50.

22. Akça K, Iplikçioğlu H. Finite element stress analysis of the influence of staggered versus straight placement of dental implants. Int J Oral Maxillofac Implants. 2001;16(5):722-30.

23. Barbier L, Vander Sloten J, Krzesinski G, Schepers E, Van der Perre G. Finite element analysis of non-axial versus axial loading of oral implants in the mandible of the dog. J Oral Rehabil. 1998;25(11):847-58.

24. Ding X, Liao SH, Zhu XH, Zhang XH, Zhang L. Effect of diameter and length on stress distribution of the alveolar crest around immediate loading implants. Clin Implant Dent Relat Res. 2009;11(4):279-87.

25. Geng, J. P.; Tan, K. B.; Liu, G. R. Application of finite element analysis in implant dentistry: a review of the literature. J. Prosthet. Dent. 2001;85:585-98.

26. Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2003;18(3):357-68.

27. Winkler S, Morris HF, Ochi S. Implant survival to 36 months as related to length and diameter. Ann Periodontol. 2000;5(1):22-31.

28. Morris HF, Ochi S, Crum P, Orenstein IH, Winkler S. AICRG. Part I: A 6-year multicentered, multidisciplinary clinical study of a new and innovative implant design. J Oral Implantol. 2004;30(3):125-33.

29. Renouard F, Nisand D. Impact of implant length and diameter on survival rates. Clin Oral Implants Res. 2006;17(Suppl 2):35-51.

30. Misch CE, Steignga J, Barboza E, Misch-Dietsh F, Cianciola LJ, Kazor C. Short dental implants in posterior partial edentulism: a multicenter retrospective 6-year case series study. J Periodontol. 2006;77(8):1340-7.

31. Maló P, de Araújo Nobre M, Rangert B. Short implants placed one-stage in maxillae and mandibles: a retrospective clinical study with 1 to 9 years of follow-up. Clin Implant Dent Relat Res. 2007;9(1):15-21.
Cómo citar
Villabona López, C., Amorin Vasco, M., Orsi, I., Alandia-Róman, C., Cardoso, A., & Bezzon, O. (1). FINITE ELEMENTS ANALYSIS OF STRESS PEAKS IN IMPLANTS WITH DIFFERENT LENGTHS. Ustasalud, 14, 13-18. https://doi.org/https://doi.org/10.15332/us.v14i1.1911
Sección
Artículos de Investigación Científica y Tecnológica