Formulation of a culture medium for the production of δ-endotoxines of Bacillus thuringiensis
DOI:
https://doi.org/10.15332/us.v17i0.2185Keywords:
Bacillus thuringiensis, δ-endotoxins, culture medium, Cry proteinsAbstract
Objective: To perform the formulation of a culture medium for the production of parasporal proteins of Bacillus thuringiensis.
Methods: Five culture media were evaluated, contrasting their formulation with the production of biomass.
Results: The total protein was extracted from each of the cultures and quantified by spectrophotometry.
Conclusion: It was found that the glycoside broth modified with 2.4:1 proportions of organic (yeast extract) and inorganic ((NH4) 2SO4) nitrogen sources improves up to 70 times the production of protein with concentrations between 19.38 and 154, 41 mg / mL. This study contributes to the affirmation that the ratio between Organic and Inorganic Nitrogen have important effects on the phase III of the growth of Bacillus thuringiensis, contrasting with the production of endospores and consequently total proteins in which the increase in δ-endotoxins are included.
Downloads
References
Elleuch J, Zghal R, Lacoix M, Chandre F, Tounsi S, Jaoua S. Evidence of two mechanisms involved in Bacillus thuringiensis israelensis decreased toxicity against mosquito larvae: genome dynamic and toxins stability. Microbiol Res. 2015;176:48-54. DOI:10.1016/j.micres.2015.04.007CC.
Hilbert D, Piggot P. Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol Mol BIol Rev. 2004;68(2):234-262. DOI:10.1128/MMBR.68.2.234-262.2004.
Tuntitippawan T, Boonserm P, Katzenmeier G, Angsuthanasombat C. Targeted mutagenesis of loop residues in the receptor-binding domain of the Bacillus thuringiensis Cry4Ba toxin affects larvicidal activity. FEMS Microbiol Lett. 2005;242(2):325-332. DOI:10.1016/j.femsle.2004.11.026.
Ujváry I. Hayes’ handbook of pesticide toxicology-Chapter 3–Pest Control Agents from Natural Products Budapest, Hungary: iKem BT, H-1033; 2010.
Devidas P, Pandit B, Vitthalrao P. Evaluation of Different Culture Media for Improvement in Bioinsecticides Production by Indigenous Bacillus thuringiensis and Their Application against Larvae of Aedes aegypti. The Scientific World Journal. 2014; Article ID 273030, 6 pages. DOI:10.1155/2014/273030.
Balabanova L, Golotin V, Podvolotskaya A, Rasskazov V. Genetically modified proteins: functional improvement and chimeragenesis. Bioengineered. 2015;6(5):262-274. DOI:10.1080/21655979.2015.1075674.
Bravo A, Gill S, Soberón M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon. 2007;49(4):423-435. DOI:10.1016/j.toxicon.2006.11.022
Beltrán L, Díaz S, Berdugo C, Zamora A, Buitrago G, Moreno N. Estrategia para el diseño de un medio de cultivo para la fermentación con Bacillus thuringiensis. Rev. colomb. biotecnol. 1998;1(1):28-34. DOI: 10.15446/rev.colomb.biote.
Patil C, Patil S, Salunke B, Salunkhe R. Insecticidalcidal potency of bacterial species Bacillus thuringiensis SV2 and Serratia nematodiphila SV6 against larvae of mosquito species Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Parasitol Res. 2012;110(5):1841-1847. DOI: 10.1007/s00436-011-2708-6.
Navarro-Mtz AK, Pérez-Guevara F. Construcción de un modelo biodinámico para los estudios de producción de proteína Cry. MB Expressv. 2014;4(79):1-10.
Zouari N, Dhouib A, Ellouz R, Jaoua S. Nutritional requirements of a strain of Bacillus thuringiensis subsp. Kurstaki and use of gruel hydrolysate for the formulation of a new medium for d-ebditoxin production. Applied Biochemistry and Biotechnology. 1997;69:41-52.
Farrera R, Pérez-Guevara F, de-la-Torre M. Carbon:nitrogen ratio interacts with initial concentration of total solids on insecticidal crystal protein and spore production in Bacillus thuringiensis HD-73. Applied Microbiology and Biotechnology. 1998;49(6):758-765. DOI: 10.1007/s002530051243
Navarro A, Ferrera R, López R, Pérez-Guevara F. Relationship between poly-beta-hydroxybutyrate production and delta-endotoxin for Bacillus thuringiensis var. kurstaki. Biotechnol Lett. 2006;28(9):641-644. DOI: 10.1007/s10529-006-0029-0.
Ozcan O, Icgen B, Ozcengiz G. Pretreatment of poultry litter improves Bacillus thuringiensis-based biopesticides production. Bioresour Technol. 2010;101(7):2401-2404. DOI:10.1016/j.biortech.2009.11.048.
Brasseur K, Auger P, Asselin E, Parent S, Sirois M. Parasporin-
from a New Bacillus thuringiensis 4R2 Strain Induces Caspases Activation and Apoptosis in Human Cancer Cells. PLoS One. 2015;10(8): e0135106. DOI:10.1371/journal.pone.0135106.
Rossa C, Mignone C. d-endotoxin activity and spore productionin batch and fedbatch culture of Bacillus thuringiensis. Biotechnol. Lett. 1993;15(3):295-300. DOI:10.1007/BF00128322.
Ertola R. Production of Bacillus thuringiensis insecticides La Plata - Argentina: Centro de investigación y desarrollo de fermentaciones industriales. Facultad de ciencias exactas; 1985.
Wakisaka Y, Masaki E, Nishimoto Y. Formation of Crystalline delta-Endotoxin or Poly-beta-Hydroxybutyric Acid Granules by Asporogenous Mutants of Bacillus thuringiensis. Appl Environ Microbiol. 1982;43(8):1473-1480.










