Method for measuring neuronal immaturity in congenital strabismus

Authors

  • Martín Gallegos-Duarte Universidad Autónoma de Querétaro
  • Jorge Domingo Mendiola-Santibañez Universidad Autónoma de Querétaro

DOI:

https://doi.org/10.15332/us.v17i0.2182

Keywords:

Cerebral cortex, strabismus, neuroimaging, gray substance, white substance, Voxel

Abstract

Objective: To determine the degree of neuronal immaturity in the essential strabismus by Voxel analysis (particle size and FreeSurfer) of the cerebral cortex.


Methods: We conducted a pilot study, prospective, transversal, and observational to analyze the density particle and cortical thickness of the brains of six children seven years of age, grouped as follows: Two healthy children as a control group (GC), two children With Congenital esotropia (ET), two children with dissociated Exotropia (XTD), and a 2-year-old child with Periventricular (LM). The results were compared for analysis.


Results: The GC showed the most granulometric elements in the white substance, while the case of LM showed the least amount as well as an increase in volume of these; the cases of strabismus occupied intermediate positions between these two parameters. By FreeSurfer, an increase in the thickness of the striated cortex and a decrease in the temporal lobes were identified in the problem group.

Conclusion: The neuronal immaturity is represented by the decrease of the density of the white substance, the increase in the gray substance, the decrease of the cortical thickness in the temporal lobes and the increase of cortical thickness in occipital lobes. There is a quantitative relation between the quantity, quality, proportion and distribution of the granulometric elements of the gray and white substance of the cerebral cortex that allows establishing in an objective way the neuronal immaturity by means of Voxel analysis.

Downloads

Download data is not yet available.

Author Biographies

Martín Gallegos-Duarte, Universidad Autónoma de Querétaro

Licenciatura en Optometría. Facultad de Medicina. Universidad Autónoma de Querétaro. México.

Jorge Domingo Mendiola-Santibañez, Universidad Autónoma de Querétaro

Doctorado en Ingeniería. Universidad Autónoma de Querétaro. Querétaro, México.

References

Gallegos-Duarte, Rubio-Chevannier HF, Mendiola-Santibañez JD. Brain Mapping Alterations in Strabismus. In: Diane E. Spinelle. Brain Mapping Alterations. New York: Nova Science Pub Inc; 2011:197-249.

Engle EC. Genetic basis of congenital strabismus. Arch Ophtalmol. 2007;125(2):189-95.

Gallegos-Duarte M. Alteraciones neuroeléctricas en el estrabismo. Cir Cir 2010;78(3):215-220.

Gallegos-Duarte M, Mendiola-Santibáñez JD, Ortiz-Retana JJ; Rubín de Celis B, Vidal-Pineda R, Sigala-Zamora A. Desviación disociada. Un estrabismo de origen cortical. Cir Ciruj. 2007;75(4):241-247.

Gallegos-Duarte M. Estima y origen de la endotropia congénita. Rev Mex Oftalmol 2005;79(1):10-16.

Gallegos-Duarte M. Maniobras exploratorias en la endotropia congénita En: Murillo-Murillo C. Estrabismo: México DF. Composición Editorial Láser; 2005:1-18.

Mendola JD, Conner IP, Roy A, Chan ST, Schwartz TL, Odom JV, Kwong KK. Voxel-based analysis of MRI detects abnormal visual cortex in children and adults with amblyopia. Human Brain Mapp. 2005;25(2):222-36. DOI:10.1002/hbm.20109.

Mendiola-Santibáñez JD, Gallegos-Duarte M, Ortiz-Retana JJ, López-Campos CE. Segmentación y análisis granulométrico de sustancia blanca y gris para el estudio del estrabismo usando transformaciones morfológicas. Rev Mex Ing Biomed 2007;28(2):92-104.

Kostović I, Jovanov-Milosević N. The development of cerebral connections during the first 20-45 weeks’ gestation. Semin Fetal Neonatal Med. 2006;11(6):415-22. DOI:10.1016/j.siny.2006.07.001

Kostovic I, Vasung L. Insights from in vitro fetal magnetic resonance imaging of cerebral development. Semin Perinatol. 2009;33(4):220-33. DOI:10.1053/j.semperi.2009.04.003.

Zecevic N, Hu F, Jakovcevski I. Interneurons in the developing human neocortex. Dev Neurobiol. 2011;71(1):18-33. DOI:10.1002/dneu.20812.

Alix JJ. The pathophysiology of ischemic injury to developing white matter. Mcgill J Med. 2006; 9(2):134-40.

Sirinyan M, Florian Sennlaub F, Dorfman A, Sapieha P, Gobeil F, Hardy P, Lachapelle P, Chemtob S. Hyperoxic exposure leads to nitrative stress and ensuing microvascular degeneration and diminished brain Mass and function in the immature subject. Stroke. 2006;37:2807-15. DOI:10.1161/01.STR.0000245082.19294.ff.

Issaho DC. Genetic Inheritance in Non-Syndromic Infantile Esotropia. Biomed J Sci Tech R10.1136/bjophthalmol-2016-308769es [Internet]. 2018 Feb 1 [cited 2018 Nov 30];2(2). Available from: http://biomedres.us/fulltexts/BJSTR.MS.ID.000716.php.

Graziano RM, Leone CR. Frequent ophthalmologic problems and visual development of extremely preterm newborn infants. J Pediatr (Rio J). 2005;81:S95-100.

Jacobson L, Rydberg A, Eliasson AC, Kits A, Flodmark O. Visual field function in school-aged children with spastic unilateral cerebral palsy related to different patterns of brain damage. Dev Med Child Neurol. 2010;52(8):e184-7. DOI:0.1111/j.1469-749.2010.03650.x

Stephenson T, Wright S, O’Connor A, Fielder A, Johnson A, Ratib S, Tobin M. Children born weigh ingless than 1701 g: visual and cognitive outcomes at 11-14 years. Arch Dis Child Fetal Neonatal Ed. 2007;92(4):F265-70. DOI:10.1136/adc.2006.104000.

Jeon H, Jung J, Kim H, Yeom JA, Choi H. Strabismus in children with white matter damage of immaturity: MRI correlation. Br J Ophthalmol. 2017;101(4):467-471. DOI:10.1136/bjophthalmol-2016-308769.

Published

2019-08-14

How to Cite

Gallegos-Duarte, M., & Mendiola-Santibañez, J. D. (2019). Method for measuring neuronal immaturity in congenital strabismus. Ustasalud, 17, 7–14. https://doi.org/10.15332/us.v17i0.2182

Issue

Section

Scientific and technological research papers