PHYSICAL AND MECHANICAL PROPERTIES AND FAILURE MODE COMPARISON OF HUMAN AND BOVINE ENAMEL

Authors

  • Mauricio Benítez Díaz Fundación CIEO; U. Militar Nueva Granada
  • Araxi Mirzoyan Kalach Fundación CIEO; U. Militar Nueva Granada
  • Jaime Rodrigo Rivera Barrero Fundación CIEO; U. Militar Nueva Granada
  • Eliana Midori Tanaka Lozano Fundación CIEO; U. Militar Nueva Granada

DOI:

https://doi.org/10.15332/us.v13i1.1394

Keywords:

Orthodontics, dental enamel, tooth, orthodontic brackets

Abstract

Objective: to compare the bond strength and failure mode between human and bovine enamel using the universal testing device and stereomicroscopy.
Methods: sixty teeth were used, thirty human upper premolars and thirty lower bovine incisor which were cemented with metallic standard brackets (Ortho Organizers, California, EE. UU.) using composite resin (Transbond® XT, 3M Unitek, St. Paul, Minnesota, EE. UU.) for later testing adhesion using the universal testing device (Instron 3367 Class 0.5 with load cell 0-30Kn, EE. UU.) at a speed of 1.,5 mm/min. The data was calculated in megapascals, dividing the force by the area of the bracket base. Finally, in order to determine the failure mode, the tooth surfaces and the bases of the brackets, were analyzed by visual inspection using a stereomicroscope (Stemi 2000C, Carl Zeiss, Göttingen, Germany).
Results: the bond strength in bovine teeth was higher than in human teeth (12.11 MPa and 6.10 MPa, respectively) without a statistically significant difference (p=0.052). The predominant failure modes for human and bovine teeth were presented at the interface Resin/Bracket (RB 60.71%) and Adhesive/Enamel (AE 57.14%). Multiple correspondence analyses reported that any force value could have any failure mode in both types of teeth.
Conclusion: although no statistically significant difference between groups was found, the applied method cannot determine whether it is possible the use of bovine teeth as a substitute for human teeth enamel in adhesion studies.

Downloads

Download data is not yet available.

Author Biographies

Mauricio Benítez Díaz, Fundación CIEO; U. Militar Nueva Granada

Estudiante Especialización en Ortodoncia Fundación CIEO, U. Militar Nueva Granada

Araxi Mirzoyan Kalach, Fundación CIEO; U. Militar Nueva Granada

Estudiante Especialización en Ortodoncia Fundación CIEO, U. Militar Nueva Granada

Jaime Rodrigo Rivera Barrero, Fundación CIEO; U. Militar Nueva Granada

Magíster en Ciencias Biomateriales, University of Alabama, Birmingham (EE. UU), profesor asociado Fundación CIEO, U. Militar Nueva Granada

Eliana Midori Tanaka Lozano, Fundación CIEO; U. Militar Nueva Granada

Especialista en Ortodoncia Fundación CIEO, U. Militar Nueva Granada, Doctorado (PhD), profesora asociada Fundación CIEO, U. Militar Nueva Granada

References

G. Hernán. Wireless networks and rural development: Opportunities for Latin America. Information technologies and international development, Vol 2, No. 3, pp. 47-56, Spring, Boston: The Massachusetts Institute of technologies, 2005.

Ozturk B, Malkoc S, Koyuturk EA, Catalbas B, Ozer F. Influence of different tooth types on the bond strength of two orthodontic adhesive systems. Eur J Orthod. 2008; 30: 407 - 412.

C. Luis, Q. River, C. César, L. Liñán. Wild: Wifi based Long Distance. Lima, Pontificia Universidad Católica del Perú, 2009, 180 p.

Lunardi N, Gameiro H, Borges M, Nouer D, Vieira V, Consani S, Sarmento J. The effect of repeated bracket recycling on the shear bond strength of different orthodontic adhesives. Braz J Oral Sci. 2008; 7: 1648 - 1652.

S, Surana, Designing Sustainable Rural Wireless Networks for Developing Regions, Trabajo de grado (PhD filosofía en ciencia de la computación), Universidad de California, Berkeley ,2009.

Nkenke E, Hirschfelder U, Martus F, Eberhard H. Evaluation of the bond strength of different bracket-bonding systems to bovine enamel. Eur J Orthod. 1997; 19: 259 - 270.

A. Gerson, C. Luis, C. David, C. César, E. David, H. Renato, L. Leopoldo, M. Jesús, M. Andrés, M. Eva Juliana, OSUNA Pablo, CHECO Yuri Pa-, PACO Juan, QUIJANDRIA Yvanna, QUISPE River, REY Carlos, SALMERÓN Sandra, SÁNCHEZ Arnau, SANONI, Paola, SEOANE Joaquín, SIMÓ, Javier y VERA Jaime. Redes inalámbricas para zonas rurales, Lima, Pontificia Universidad Católica del Perú Enero 2008, 252 p.

Oshiro J, Medici E, Pereira J, Castillo M. Comparative analysis of human and bovine teeth: radiographic density. Braz Oral Res. 2008; 22: 346 - 351.

M. Afanasyev, T. Chen, G. M. Voelker, and A. C. Snoeren, “Usage Patterns in an Urban WiFi Network,” IEEE/ACM Transactions of Networking, vol. 18, No.5, pp.1359-1372, October 2010.

Posada M, Sánchez C, Gallego G, Vargas A, Restrepo L, López J. Dientes de bovino como sustituto de dientes humanos para su uso en odontología. Revisión de la literatura. Rev CES Odontol. 2006; 19: 63 - 68.

S. F. Javier, Modelado y Optimización de IEEE802.11 para su Aplicación en el Despliegue de Redes Extensas en Zonas rurales aisladas de Países en Desarrollo. Trabajo de grado (Doctor en ingeniería de telecomunicación). Universidad Politécnica Superior, Escuela superior de ingenieros de telecomunicación, Departamento de Ingeniería y Sistemas Telemáticos 2007.

Nakamichi I, Iwaku M, Fusayama T. Bovine teeth as possible substitute in adhesion test. J Dent Res. 1983; 62: 1076 - 1083.

E. M. María, Guía para el Diseño e implementación de redes inalámbricas en entornos rurales de Perú, Trabajo de grado (Ingeniero de Telecomunicaciones), Escuela Politécnica Superior, Universidad Autónoma de Madrid, 2010.

Fowler C, Swartz M, Moore B, Rhodes B. Influence of selected variables on adhesion testing. Dent Mater. 1992; 8: 265 - 269.

P. B, Germán, Guía de tecnologías de conectividad para acceso en áreas rurales. Unión internacional de telecomunicaciones, Oficina de desarrollo de las telecomunicaciones, 2007, 84p.

Oesterle L, Shellhart W, Belanger G. The use of bovine enamel in bonding studies. Am J Orthod Dentofacial Orthop. 1998; 113: 514 - 519.

T, Daniele, G, Alessandro Stefanelli, Riccardo, F. Benedetta, C. Fluvio, Reliability and scalability analysis of Low cost long distance IP-Based wireless networks, innovations for digital inclusion ITU-T Kaleidoscope event, Mar del Plata, 2009.

Grassi L, Canhizares C, Barbosa R, Guaglianoni D, Pereira L. Human teeth versus bovine teeth: cutting effectiveness of diamond burs. Braz J Oral Sci. 2010; 9: 39 - 42.

T. Daniele, G. Alessandro, Stefanelli, Riccardo, F. Benedetta, V. Piergiorgi, Performance of Low Cost Radios in the Implementation of Long Distance Wireless Links, iXem Labs, Politecnico di Torino, Italy, 2008.

White A, Yorath C. Human and bovine enamel erosion under single drink conditions. Eur J Oral Sci. 2010; 118: 604 - 609.

T. Daniele, G. Alessandro Stefanelli, Riccardo, F, Benedetta, C. Fluvio, An independent, Low Cost and Open Source Solution for the realization of wireless links over huge multikilometric Distance, p.495-498, IEEE Radio and Wireless Symposium, 2008.

Georgia’s Health Science University-School of Dentistry. Bond failure analysis. January 2003.

K. P., Rabin. Multi-Tier Network Architecture for Long Distance Rural Wireless Networks in Developing Regions. California, 2009, Trabajo de grado (Ph.D. en filosofía en ciencias de las computación). University of California at Berkeley, Electrical Engineering and Computer Science.

Ciceri A, Monroy J, Ardila G, Luna A, Rivera J. Comparación de la fuerza adhesiva y el tipo de falla de dos sistemas adhesivos para ortodoncia. Ustasalud. 2011; 10: 29 - 35.

S. Anmol, N. Sergiu, P. Rabin, S. Sonesh, BREWER, Eric, S. Lakshminarayanan. Packet Loss Characterization in WiFi-based Long Distance Networks, Universidad de California Berkeley, Universidad de Colorado, Universidad de Nueva York, IEEE INFOCOM, 2007, pp 312-320.

Polat O, Karaman A, Buyukyilmaz T. In vitro evaluation of shear bond strengths and In vivo analysis of bond survival of indirect-bonding resins. Angle Orthod. 2004; 74: 405 - 409.

R. A. Andrade, P. H Salas, D. S. Paredes, “Tecnología Wi-Fi”, Argentina, 2008 pp. 1–116.

Sfondrini M, Scribante A, Cacciafesta V, Gandini P. Shear bond strength of deciduous and permanent bovine enamel. J Adhes Dent. 2011; 13: 227 - 230.

I. 802.11-2007, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Rev. 2007, technical report, IEEE CS, 2007.

Klocke A, Kahl-Niekeb B. Influence of the force location in orthodontic shear bond strength testing. Dent Mater. 2005; 21: 391 - 396.

Excerpts from FCC Rules part 15 relative to “Unlicensed Spread Spectrum radio systems” believed to be current as of July 23, 1996.

Klocke A, Kahl-Niekeb B. Effect of debonding force direction on orthodontic shear bond strength. Am J Orthod Dentofacial Orthop. 2006; 129: 261 - 265.

P. Caleb, S. Douglas, G. Dirk, The Stability of The Longley-Rice Irregular Terrain Model for Typical Problems, University of Colorado at Boulder, 2011.

Vilar R, Souza N, Cal-Neto J, Galvao M, Sampaio H, Moraes A. Shear bond strength of brackets bonded with two light-curing orthodontic adhesives. J Adhes Dent. 2009; 11: 259 - 262.

G. A. Hufford, A. G. Longley, W. A. Kissick, “A guide to use of the ITS irregular terrain model in the area prediction mode,” U.S. Dep. Commerce, Boulder, CO, NTIA Rep. 82-100, Apr. 1982.

Fernández L, Canut J. In vitro comparison of the retention capacity of new aesthetic brackets. Eur J Orthod. 1999; 11: 71 - 77.

T. S. Rappaport, Wireless Communications Principles and Practice, 2th. Ed., Prentice Hall, New Jersey, pp. 70-71, 2002.

Pickett K, Sadowsky L, Jacobson A, Lacefield W. Orthodontic in vivo bond strength: comparison with In vitro results. Angle Orthod. 2001; 71: 141 - 148.

Fabricante de Radios Wi-Fi IEEE802.11 Ubiquity Networks, (online), citado en abril 2011, Disponible en: <http://ubnt.com/>.

F. J. Simo Reigadas, A. Martínez Fernández, F. J. Ramos-López, J. Seoane-Pascual, Modeling and Optimizing IEEE 802.11 DCF for Long-Distance Links”, IEEE Transactions on Mobile Computing, p. 15, Vol. 9, No. 6, 2010.

K. Chebrolu, B. Raman, S. Sen. Long-Distance 802.11b Links: Performance Measurements and Experience. In ACMMOBICOM, 2006.

D . Aguayo, J. Bicket, S. Biswas, G. Judd, and Robert M. Link-level Measurements from an 802.11b Mesh Network. In SIGCOMM, Aug 2004.

P. Barsocchi, G. Oligeri y F. Potorti. Frame error model in rural Wi-Fi networks. IEEE Transactions on wireless communications, Marzo 2009.

P. Guangyu and T. Henderson, Validation of ns-3 802.11b PHY model. Boeing Research and Technology, The Boeing Company, MAY 2009.

M. B. Pursley, Fellow, IEEE, and T. C. Royster IV, Properties and Performance of the IEEE 802.11b Complementary-Code-Key Signal Sets, IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 2, FEBRUARY 2009.

M. Kwiatkowska, G. Norman and J. Sproston. Probabilistic Model Checking of the IEEE 802.11 Wireless Local Area Network Protocol. In H. Hermanns and R. Segala (editors) Proc. PAPM/PROBMIV’02, volume 2399 of Lecture Notes in Computer Science, pages 169-187, Springer. July 2002.

N. Sandra Salmerón, Parametrización de IEEE 802.11e EDCA para la priorización del tráfico VoIP en redes extensas para zonas rurales de países en vías de desarrollo, Madrid, trabajo de grado Máster, Universidad Rey Juan Carlos, ETSI de Telecomunicación, 2007.

W. Grote, C. Ávila y A. Molina. Análisis de máximo desempeño para un WLAN operando a tasas fijas o adaptativas usando el estándar IEEE802.11a/b/g. Ingeniare. Rev. chil. ing. 2007, Vol.15, No.3, pp. 320-327.

S. Delgadillo, D. Guzmán, A. Muller y W. Grote. Análisis experimental de un ambiente Wi-Fi multicelda. Rev. Fac. Ing. - Univ. Tarapacá [online]. 2005, Vol.13, No.3, pp. 45-52. ISSN 0718-1337.

P. Rabin, N. Sergiu, S. Sonesh, S. Anmol, S. Lakshminarayanan, Eric. Brewer. WiLDNet: Design and Implementation of High Performance WiFi Based Long Distance Networks, TIER Group, Universidad de California Berkeley, Universidad de Colorado, Universidad de Nueva York, Boulder, 2007.

G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function,” IEEE J. Selected Areas in Comm, Vol. 18, No. 3, pp. 535-547, Mar. 2000.

G. Bianchi and I. Tinnirello, “Remarks on IEEE 802.11 DCF Performance Analysis,” IEEE Comm. Letters, vol. 9, no. 8, pp. 765-767, Aug. 2005.

M. Kwiatkowska, G. Norman and J. Sproston. Proba - bilistic Model Checking of the IEEE 802.11 Wireless Local Area Network Protocol. In H. Hermanns and R. Segala (editors) Proc. PAPM/PROBMIV’02, Vol. 2399 of Lecture Notes in Computer Science, pages 169- 187, Springer. July 2002.

D. K. Puthal y B. Sahoo, A Finite State Model for IEEE 802.11 Wireless LAN MAC DCF, Emerging Trends in En - gineering & Technology, International Conference on, pp. 258-263, First International Conference on Emer - ging Trends in Engineering and Technology, 2008.

R. P. Keith, G. Jared,How to Guide on JPerf and IPerf, Wireless LAN profesionals 2011.

Published

2014-01-01

How to Cite

Benítez Díaz, M., Mirzoyan Kalach, A., Rivera Barrero, J. R., & Tanaka Lozano, E. M. (2014). PHYSICAL AND MECHANICAL PROPERTIES AND FAILURE MODE COMPARISON OF HUMAN AND BOVINE ENAMEL. Ustasalud, 13(1), 11–17. https://doi.org/10.15332/us.v13i1.1394

Issue

Section

Scientific and technological research papers