Argumentation by example from the figure of the judicial precedent. An approach from Chaïm Perelman
DOI:
https://doi.org/10.15332/iust.v0i19.2804Keywords:
Judicial precedent, Argumentation by example, Right to work, Perelman, Legal argumentationAbstract
This work performs a development about the research of the judicial precedent by means of the argumentation by example, from the approach of one of the argumentative techniques by Perelman. It is studied the way this technique is materialized in the judgments, not only those from the high court’s otherwise from all administrators of justice that motivate their judgments. For this they use the precedent and the law of inertia that put forward the same author.
On this specific case we talk about the fundamental right to work of persons deprived of liberty. Also, we analyze the way that the constitutional court use some argumentative techniques by writers like Perelman, Toulmin and Weston above all in the revision of the guardianship action. For this exercise, the text realizes a tour through some argumentation theories and evaluate the application of those notions into the practice of law.
Downloads
References
Colombia ha tenido un buen año con los TLC que negoció, Revista Portafolio (Online), Octubre 13 de 2011, Disponible: http://www.portafolio.co/ negocio
El país está preparado agrícolamente para el TLC, Revista Portafolio (Online), Octubre 11 de 2011, Disponible: http://www.portafolio.co/negocio
R. D. Tillett, Image analysis for agricultural processes. En: Division Note DN 1585. Research Institute. 1990.
L.G. Shapiro, G.C.Stockman, Computer Vision, Prentice Hall, 2001.
Da-Wen Sun, Computer Vision Technology for Food Quality Evaluation, Ed. Elsevier, 2008.
P. Chen, Z. Sun, A review of non-destructive methods for quality evaluation and sorting of agricultural products, Journal of Agricultural Engineering Research, Volume 49, May–August 1991, Pages 85-98.
TadhgBrosnan, Da-Wen Sun, Inspection and grading of agricultural and food products by computer vision systems—a review, Computers and Electronics in Agriculture, Volume 36, Issues 2–3, November 2002, Pages 193-213.
V Leemans, M-F Destain, A real-time grading method of apples based on features extracted from defects, Journal of Food Engineering, 61 (2004), pp. 83–89.
JA Throop, DJ Aneshansley, WC Anger, DL Peterson, Quality evaluation of apples based on surface defects: development of an automated inspection system,Postharvest Biology and Technology, 36 (2005), pp. 281–290.
D Unay, B Gosselin, Stem and calyx recognition on “Jonagold” apples by pattern recognition,Journal of food Engineering, 78 (2) (2007), pp. 597–605.
J Blasco, S Cubero, R Arias, F Juste, E Moltó, On-line quality grading of mandarin segments by computer vision, XVIth CIGR World Congress: Agricultural Engineering for a Better World, Book of Abstracts, Bonn, Germany (2006), pp. 623– 624.
J Blasco, N Aleixos, E Moltó, Computer vision detection of peel defects in citrus by means of a region oriented segmentation algorithm, Journal of Food Engineering, 81 (3) (2007), pp. 535–543.
N Hernandez, P Barreiro, M Ruiz-Altisent, J RuizCabello, ME Fernandez-Valle,Detection of seeds in citrus using MRI under motion conditions and improvement with motion correction, Concepts in Magnetic Resonance: Part B—Magnetic Resonance Engineering, 26B (1) (2005), pp. 81–92.
M Nagata, PM Bato, M Mitarai, Q Cao, T Kitahara, Study on sorting system for strawberry using machine vision (part 1): development of software for determining the direction of strawberry (Akihime variety), Journal of Japan Society of Agricultural Machinery, 62 (1) (2000), pp. 100–110.
R Díaz, M Blasco, J Blasco, E Moltó, Comparison of three algorithms in the classification of table olives by means of computer vision, Journal of Food Engineering, 61 (2004), pp. 101–107.
S Colmagro, G Collins, M Sedgley, Processing technology of the table olive, Horticultural Reviews, 25 (2001), pp. 235–260.
JC Noordam, GW Otten, AJM Timmermans, BH van Zwol, High speed potato grading and quality inspection based on a color vision system, Proceedings of SPIE: The International Society for Optical Engineering, 3966 (2000), pp. 206–219.
T Brosnan, D Sun, Improving quality inspection of food products by computer vision—a review, Journal of Food Engineering, 61 (2004), pp. 125– 135.
C. Maya. Desarrollo de un algoritmo para la caracterización y clasificación de granos de café empleando técnicas de visión artificial. Manizales: U. Nacional de Manizales, 2001.
J. Betancur, Segmentación de granos de café mediante métodos de crecimiento de regiones. Manizales: U Nacional de Manizales, 2002.
Z. Sandoval, F. Prieto, Caracterización y clasificación de café cereza por medio de visión artificial, 2003.
J. E. Hernández, Clasificación de frutos de café según su etapa de maduración basada en redes neuronales artificiales. Manizales: U. Nacional de Manizales, 2004.
J. C. Mosquera, A. Sepúlveda, C, A. Isaza, Procesamiento de imágenes ópticas de frutos café en cereza por medio de filtros acusto-ópticos, Ingeniería y Desarrollo, Universidad del Norte, Numero 21, 2007.
N.Otsu, A threshold selection method for gray level histograms, IEEE Trans. Syst. Man Cybern., 9, 62-6, 1979.
S. Theodoridis, S. Koutroumbas, Pattern Recognition. Academic Press, San Diego, USA, 2008.
G. Bradski, A. Kaehler, Learning OpenCV: Computer Vision with the OpenCV Library,O’Reilly Media, 2008.
González, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, 2008.
Stricker, M. and Orengo, M., Similarity of color images, SPIE Conference on Storage and Retrieval for Image and Video Databases III. Vol. 2420, p. 381-392, 1995.
Moore, A., Cross validation for detecting and preventing overfitting, School of Computer Science, Carneigie Mellon University, 2001.
Lizcano, S., Identificación de las etapas de maduración de la piña perolera empleando técnicas de visión artificial, Universidad Pontificia Bolivariana, Seccional Bucaramanga, 2010.