Separador de fragmentos (F.R.S.) como herramienta para el análisis de reacciones nucleares a FAIR (FAcility for Antiproton and Ion Research in Europe)

Autores/as

  • María F. Robles-Cifuentes Universidad Pedagógica y Tecnológica de Colombia
  • Jossitt W. Vargas-Cruz Universidad Santo Tomás, Tunja

DOI:

https://doi.org/10.15332/iteckne.v17i2.2467

Palabras clave:

Espectrómetro, FAIR, Super-FRS

Resumen

Cada día la ciencia ha tenido que recurrir a la construcción de grandes instalaciones e instrumentos para realizar experimentos que permitan obtener información para que posteriormente sea analizada. En la física nuclear la creación de nuevas instalaciones ha venido creciendo a enormes pasos ya que para estudiar esta área de la física ha sido necesario construir aceleradores, espectrómetros magnéticos y detectores con el objetivo de obtener información experimental de sucesos a escala microscópica. En el presente artículo se hace una revisión acerca del proceso del diseño y construcción del espectrómetro de alta resolución magnética SUPER-FRS (Super-Fragment Separator) es resultado de una gran colaboración llamada FAIR en (Darmstadt) Alemania en las instalaciones del GSI con el fin de conocer la motivación científica que llevó a construirlo, su diseño técnico y trabajos que se han de realizar en él.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

María F. Robles-Cifuentes, Universidad Pedagógica y Tecnológica de Colombia

Físico, Universidad Pedagógica y Tecnológica de Colombia, Tunja

Jossitt W. Vargas-Cruz, Universidad Santo Tomás, Tunja

Departamento de Ciencias Básicas, Universidad Santo Tomás, Tunja

Citas

Epelbaum, E., Hammer, H. W., & Meißner, U. G. (2009). Modern theory of nuclear forces. Reviews of Modern Physics, 81(4), 1773.

J.M. Arias, M. Lozano, Advanced course in modern nuclear physics, Lecture Notes in Physics, 1st Edition, Ed Springer 2010.

Vena Carter, Advanced Nuclear Physics, Ed. Global Media, City, 2009, pp 104.

J.W. Negele, Erich W. Vogt, Advances in Nuclear Physics, Advances in the Physics of Particles and Nuclei , 23 ed. Vol, ed Springer, 1996 pp 315

Sokolsky, P., Sommers, P., & Dawson, B. R. (1992). Extremely high energy cosmic rays. Physics reports, 217(5), 225-277.

Dürr, S., Fodor, Z., Frison, J., Hoelbling, C., Hoffmann, R., Katz, S. D., ... & Szabo, K. K. (2008). Ab initio determination of light hadron masses. Science, 322(5905), 1224-1227.

Andreas S Kronfeld, Journal of Physics: Conference Series 125 (2008) 01206

Jorge Casaus, Javier Rodríguez y Eusebio Sánchez, Cromodinámica Cuántica: el color de los quarks, Departamento de Fusión y Física de Partículas Elementales. CIEMAT, enero 2005.

Olive, K. A. (2014). Review of particle physics. Chinese physics C, 38(9), 090001090001.

Soria, A. F. (2015). Física nuclear y de partículas (Vol. 62). Universitat de València.

Stock, R. (Ed.). (2013). Encyclopedia of nuclear physics and its applications. John Wiley & Sons.

R. J. Blin-Stoyle FRS , Physics and Its Applications, ed .Springer Netherland, ed 1 1991 pp 224.

Klaus Bethge, Gerhard Kraft, Peter Kreisler, Gertrud Walter, Medical Applications of Nuclear Physics, Biological and Medical Physics, Biomedical Engineering, Springer-Verlag, ed 1. ,2004 pp 209.

Lilley, J. (2013). Nuclear physics: principles and applications. John Wiley & Sons.

Thomas, J. (Ed.). (2012). Material characterization using ion beams (Vol. 28). Springer Science & Business Media.

Francis Lambert, Yuri Volkov, NATO Science for Peace and Security Series B: Physics and Biophysics, ed 1. , 2006 pp 217.

José Benlliure y Berta Rubio, Grandes instalaciones científicas en física nuclear: pasado, presente y futuro, [Online] REF Enero-Marzo 2008, Temas de Física Available: http://www.rsef.org

GSI, (2020), GSI, www.gsi.de/fair

B. M. Nyako, et al. Phys. Rev. Lett, 52 (1984) 507 y P.J. Twin, et al. Phys. Rev. Lett, 54 (1986) 811.

Laboratori Nazionali di Legnaro, (2018), Institu Nacionale di Fisica Nucleare, http://www.lnl.infn.it/index.php/en/

Bolufer, P. (2010, July). AlbA. In anales de mecánica y electricidad.

Malmbeck, R., Skarnemark, G., Alstad, J., Fure, K., Johansson, M., & Omtvedt, J. (2000). Chemical separation procedure proposed for studies of bohrium. Journal of Radioanalytical and Nuclear Chemistry, 246(2), 349-353.

Journal of Radioanalytical and Nuclear Chemistry,Volume 246, Issue 2, 2000 , pp 349353.

Düllmann, C. E. (2012). Superheavy elements at GSI: a broad research program with element 114 in the focus of physics and chemistry. Radiochimica Acta, 100(2), 67-74.

Dvorak, J., Bruchle, W., Chelnokov, M., Dullmann, C. E., Dvorakova, Z., Eberhardt, K., ... & Qin, Z. (2008). Doubly magic nucleus 270Hs.

Düllmann, Christoph E. (2012). "Superheavy elements at GSI: a broad research program with element 114 in the focus of physics and chemistry". Radiochimica Acta 100 (2): 67–74.

Morita, K. (2005). Decay of an Isotope 277112 produced by 208Pb+ 70Zn reaction. In Exotic Nuclei Exon2004 (pp. 188-191).

H. Geissel, P. Armbruster, K.H. Behr, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 70, Issues 1–4, 1 August 1992, Pages 286-297.

Geissel H., Ambruster P., et a l; A proposal for the SIS-ESR experimental Program (1987).

Blasche K, SIS Beam Development 1981-1991, GSI-Report GSI-SIS-INT/86-2.

GSI, (2020), GSI ACELERATOR,

https://www.gsi.de/en/researchaccelerators/accelerator_facility/ion_sources starting_point_of_the_gsi_accelerator_facility_ion_sources.htm]

GSI, (2020), GSI ACELERATOR

https://www.gsi.de/en/researchaccelerators/accelerator_facility/linear_accelerator.htm

GSI, (2020), GSI ACELERATOR, https://www.gsi.de/en/researchaccelerators/accelerator_facility/ring_accelerator.htm.

GSI, (2020), GSI ACELERATOR,

https://www.gsi.de/en/researchaccelerators/accelerator_facility/storage_ring.htm

Fettouhi, A. (2006). Investigation of Slowing Down and Charge-Exchange of Nickel and Uranium Ions in Gases and Solids in the Energy Range (60-200) MeV/u (Doctoral dissertation).

GSI, (2020), GSI ACELERATOR, https://www.gsi.de/en/researchaccelerators/accelerator_facility/main_control_room.htm.

GSI, (2020), GSI ACELERATOR, https://www.gsi.de/en/start/news.htm

Geissel, H., Armbruster, P., Behr, K. H., Brünle, A., Burkard, K., Chen, M., ... & Langenbeck, B. (1992). The GSI projectile fragment separator (FRS): a versatile magnetic system for relativistic heavy ions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 70(1-4), 286-297.

Bosch, F. (1992). First experiments at the Darmstadt storage-cooler ring ESR. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 314(2), 269-276.

Geissel, H., Armbruster, P., Behr, K. H., Brünle, A., Burkard, K., Chen, M., ... & Langenbeck, B. (1992). The GSI projectile fragment separator (FRS): a versatile magnetic system for relativistic heavy ions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 70(1-4), 286-297.

FAIR, (2020), FAIR, https://fair-center.eu/index.php?id=1

GSI, (2020), GSI, https://www.gsi.de/en/researchaccelerators/fair/fair

Durante, M., Indelicato, P., Jonson, B., Koch, V., Langanke, K., Meißner, U. G., ... & Wiescher, M. (2019). All the fun of the FAIR: fundamental physics at the facility for antiproton and ion research. Physica Scripta, 94(3), 033001.

FAIR, (2020), Physics at FAIR,

https://www.gsi.de/en/researchaccelerators/fair/research.htm

Steinheimer, J., Augustin, I., Andronic, A., Saito, T., Senger, P., & Stoecker, H. (2009). Strangeness at the international Facility for Antiproton and Ion Research. Journal of Physics G: Nuclear and Particle Physics, 36(6), 064036.

Bracco, A. (2017). The NuPECC long range plan 2017: perspectives in nuclear physics. Europhysics News, 48(4), 21-24.

Chattopadhyay, S. (2014). Physics at FAIR. Nuclear Physics A, 931, 267-276.

Erni, W., Keshelashvili, I., Krusche, B., Steinacher, M., Heng, Y., Liu, Z., ... & Becker, J. (2009). Physics performance report for PANDA: Strong interaction studies with antiprotons. arXiv preprint arXiv:0903.3905.

Ehehalt, W., & Cassing, W. (1996). Relativistic transport approach for nucleus-nucleus collisions from SIS to SPS energies. Nuclear Physics A, 602(3-4), 449-486.

Orsaria, M., Rodrigues, H., Weber, F., & Contrera, G. A. (2014). Quark deconfinement in high-mass neutron stars. Physical Review C, 89(1), 015806.

http://www2.yukawa.kyotou.ac.jp/~kenji.fukushima/denseQCD/talks/Fukushima.pdf, arXiv:1301.6377.

McLerran, L. (2008). Quarkyonic matter and the phase diagram of QCD. In Continuous Advances In QCD 2008 (pp. 125-134).

FAIR, (2020), FAIR EXPERIMENTS, http://www.fair-center.eu/forusers/experiments/cbm.html.

Friman, B., Höhne, C., Knoll, J., Leupold, S., Randrup, J., Rapp, R., & Senger, P. (Eds.). (2011). The CBM physics book: Compressed baryonic matter in laboratory experiments (Vol. 814). Springer.

Äystö, J., Behr, K. H., Benlliure, J., Bracco, A., Egelhof, P., Fomichev, A., ... & Harakeh, M. N. (2016). Experimental program of the Super-FRS Collaboration at FAIR and developments of related instrumentation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 376, 111-115.

Geissel, H., Chen, L., Dickel, T., Farinon, F., Dillmann, I., Knöbel, R., ... & Patyk, Z. (2013). Recent results from FRS experiments with exotic nuclei produced with uranium projectiles and perspectives with the Super-FRS. In Exotic Nuclei: EXON-2012(pp. 263272).

Winkler, M., Geissel, H., Weick, H., Achenbach, B., Behr, K. H., Boutin, D., ... & Kelic, A. (2008). The status of the Super-FRS in-flight facility at FAIR. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(19-20), 4183-4187.

Super-FRS Collaboration. (2014). Scientific program of the Super-FRS Collaboration: Report of the collaboration to the FAIR management.

Winkler, M., Geissel, H., Weick, H., Achenbach, B., Behr, K. H., Boutin, D., ... & Kelic, A. (2008). The status of the Super-FRS in-flight facility at FAIR. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(19-20), 4183-4187.

Douma, C. A., Gellanki, J., Najafi, M. A., Moeini, H., Kalantar-Nayestanaki, N., Rigollet, C., ... & Timersma, H. J. (2016, August). Verification of passive cooling techniques in the Super-FRS beam collimators. In Journal of Physics: Conference Series(Vol. 742, No. 1, p. 012031).

Plaß, W. R., Dickel, T., Purushothaman, S., Dendooven, P., Geissel, H., Ebert, J., ... & Weick, H. (2013). The FRS Ion Catcher–a facility for high-precision experiments with stopped projectile and fission fragments. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 317, 457-462.

Mardor, I., Aviv, O., Avrigeanu, M., Berkovits, D., Dahan, A., Dickel, T., ... & Hass, M. (2018). The soreq applied research accelerator facility (saraf): overview, research programs and future plans. The European Physical Journal A, 54(5), 91.

Tamm, I. E., & Frank, I. M. (1937). Coherent radiation of fast electrons in a medium. In Dokl. Akad. Nauk SSSR (Vol. 14, No. 3, pp. 107-112).

Tamagaki, R. (1968). Potential models of nuclear forces at small distances. Progress of Theoretical Physics, 39(1), 91-107.

Ong, H. J., Tanihata, I., Tamii, A., Myo, T., Ogata, K., Fukuda, M., ... & Matsubara, H. (2013). Probing effect of tensor interactions in 16O via (p, d) reaction. Physics Letters B, 725(4-5), 277-281.

Yamazaki, T., Hayano, R. S., Itahashi, K., Oyama, K., Gillitzer, A., Gilg, H., ... & Geissel, H. (1996). Discovery of deeply bound π− states in the 208 Pb (d, 3 He) reaction. Zeitschrift für Physik A Hadrons and Nuclei, 355(3), 219-221.

Itahashi, K. (2012). Letter of Intent for GSI-SIS (2011); K. Itahashi et al. Prog. Theor. Phys, 128, 601.

Kanungo, R. (2013). A new view of nuclear shells. Physica Scripta, 2013(T152), 014002.

Descargas

Publicado

2020-07-01

Cómo citar

Robles-Cifuentes, M. F., & Vargas-Cruz, J. W. (2020). Separador de fragmentos (F.R.S.) como herramienta para el análisis de reacciones nucleares a FAIR (FAcility for Antiproton and Ion Research in Europe). ITECKNE, 17(2), 83–90. https://doi.org/10.15332/iteckne.v17i2.2467

Número

Sección

Artículos de Investigación e Innovación