Pedagogy of peace for school coexistence in students of the ‘Institución Educativa de Enseñanza Media’ (IEFEM) in Quibdó, Chocó: a didactic sequence

Authors

DOI:

https://doi.org/10.15332/erdi.v12i2.2928

Keywords:

Didactic sequence, Pedagogy of peace, School coexistence

Abstract

This article is the result of a research carried out in the educational context from a methodological framework of action research. Its main objective is to generate a didactic sequence from the pedagogy of peace towards the promotion of school coexistence in the students of the 7th grade of the Institución Educativa de Enseñanza Media’ (IEFEM) in Quibdó, Chocó. The research involved 212 seventh-grade students. Structured interviews were developed, the information collected was interpreted from textual matrices, which organize attributions and meanings on the self-perception of social competence. The results achieved the design of a didactic sequence for the promotion of school coexistence in violent contexts at the social level; Each one of the strategies were designed, executed, and evaluated through interviews, field diaries and anecdotal records whose purpose was intended to involve the participants in the entire process.

Downloads

Download data is not yet available.

Author Biographies

Liliana Paola Muñoz Gómez, Universidad de Medellín

Doctora en Ciencia de la educación, Universidad de Medellín, Medellín, Colombia.

Nidia Guerrero Mosquera, Universidad de Medellín

Maestranda en Conflicto y Paz, Universidad de Medellín, Medellín, Colombia.

References

A. Bergamin, W.S. Ke, G. Zosi, “A thermal 0.8 m3 enclosure with submillikelvin stability”, Journal of Physics E: Scientific Instruments, Vol.16 No.1. En: Sci. Instrum. Vol.16, No.96 doi: 10.1088/0022- 3735/16/1/019, 1983.

A. Bula, A. Márquez, “Modelación matemática y simulación de un sistema de acondicionamiento de aire en estado transitorio”, Ingeniería y desarrollo, No.11, 2002.

L.E. Barajas, “Identificación de parámetros de un modelo matemático mediante un algoritmo basado en cuasi-linearización y mínimos cuadrados”. Disponible en: http://biee.epn.edu.ec/ dspace/handle/123456789/377, 2004.

M. Campbell, S. Brunke, “Nonlinear Estimation of Aircraft Models for On-line Control Customization”. Aerospace Conference IEEE Proceedings, Vol.2, pp: 2/621 - 2/628, 2001.

D. Bravo, M. López, “Modelo Matemático de un Tubo Intercambiador de Calor”, Revista de la Sociedad Colombiana de Física, Vol. 41, No. 2, pp. 520-523, 2009.

D. Mihai, “Digital Equipment for the Temperature Control Inside an Enclosure. The System Modelling”. ICATE 2010, Craiova, University of Craiova, Romania, 2010.

D. Mihai, C. Caramida, “Digital equipment for the temperature ontrol inside an enclosure. The hardware and some experimental results”, ICMET, Craiova, Romania, 2010.

D. Álvarez de los Corrales Melgar, “Modelización de calderas de recuperación de calor (soplado)”, Ingeniería química, No.417, pp.73-84, 2004.

Engineering ToolBox. “Tools and Basic Information for Design, Engineering and Construction of Technical Applications”, 2005. http://www.engineeringtoolbox.com/air-temperature-pressuredensity-d_771.html Consulta: Marzo, 2009.

J. Evans, S. Elkaim, B. Parkinson, “System Identification of an Autonomus Aircraft using GPS” Stanford Universtity, 2001.

F. Cortés, F. Chejne, J. Zartha, C. Isaza. “Modelo Matemático de un refrigerador por adsorción de metanol en carbón activo”, Revista Biotecnología en el Sector Agropecuario y Agroindustrial, Vol.8, No.2, 2010.

G.V. Kuznetsov, M.A., Sheremet, “Mathematical modelling of complex heat transfer in a rectangular enclosure”, Thermophysics and Aeromechanics, Vol.16, No.1, pp.119-128, DOI: 10.1007/ s11510-009-0012-z, 2009.

S. Lyashevskiy, Y. Chen, “Nonlinear Identification of Aircraft Indianapolis. Control Applications”, Proceedings of the 1996 IEEE International Conference, 1996.

N. Durango, A. Bula, L. Donaldo, “Modelo matemático para secador de alimentos de flujo radial”. Ingeniería y desarrollo, No. 15, pp.1-8, 2004.

NI USB-622x/625x OEM. USER GUIDE. M Series USB-6221/6225/6229/6251/6255/6259 OEM Devices. http://www.ni.com/pdf/products/ us/371910a.pdf , Consultado el 26 de Marzo de 2009.

NS, LM34/LM35 Precision Monolithic Temperature Sensors. National Semiconductor.Application Note 460. October 1986.

Manual NI USB-6259. http://sine.ni.com/ds/ app/doc/p/id/ds-20/lang/en , Consultado el 26 de Marzo de 2009.

P. Ortiz, A. Arias, “Simulink aplicado a sistemas de control”. Fondo editorial ITM, Medellín, 2010.

M. Pramparo, P. Rossi, “Balances de energía”, Universidad Nacional de Rio Cuatro http:// www.ing.unrc.edu.ar/materias/balances_de_ masa_y_energia/archivos/teoricos/08-balances_de_energia.pdf Consulta octubre de 2010.

L.C. Ríos, N. Toro, “Estimación de parámetros en modelos arma por el criterio de mínimos cuadrados” Scientia et Technica, Año XII, No.31, UTP, 2006.

Power Control with Thyristors and Triacs. Power Semiconductor Applications Philips Semiconductors. 1994.

Tools and Basic Information for Design, Engineering and Construction of Technical Applications”, 2005.Engieneering Toolbox, http://www.engineeringtoolbox.com/air-temperature-pressuredensity-d_771.html Consulta: Marzo, 2010.

Triacs BT138 series.Philips Semiconductors Product specification.June 2001.

A. Zabaleta, M. Larrayoz, “Computational Fluid Dynamics Studies in Heat and Mass Transfer Phenomena in Packed Bed Extraction and Reaction Equipment”, Universitdad Politécnica de Catalunya (España), 2007.

Published

2022-12-10

How to Cite

1.
Muñoz Gómez LP, Guerrero Mosquera N. Pedagogy of peace for school coexistence in students of the ‘Institución Educativa de Enseñanza Media’ (IEFEM) in Quibdó, Chocó: a didactic sequence. ESPIRAL [Internet]. 2022Dec.10 [cited 2025Dec.7];12(2):45-61. Available from: https://revistas.ustabuca.edu.co/index.php/ESPIRAL/article/view/2928

Issue

Section

ITHACA: Research and Innovation Articles