Teorías del crecimiento craneofacial: una revisión de literatura
Resumen
El estudio del crecimiento craneofacial es un proceso complejo y esencial para el diagnóstico y tratamiento de las maloclusiones. La formación de las estructuras craneofaciales se han explicado a lo largo del tiempo por medio de teorías que diferentes investigadores han propuesto en su interés de argumentar sus postulados; así encontramos las teorías de la dominancia cartilaginosa de Scott; Sutural de Sicher; Funcional de Moss; Servosistema de Petrovic; todas reguladas de una u otra manera por la teoría genética. Para hablar de crecimiento y desarrollo es importante comprender que estos dos términos no son sinónimos, pero están muy relacionados. Por crecimiento se entiende el proceso de incremento de la masa de un ser vivo, que se produce por el aumento del número de células (hiperplasia) o de la masa celular (hipertrofia), por otro lado, el desarrollo es el proceso por el cual los seres vivos logran mayor capacidad funcional de sus sistemas a través de los fenómenos de maduración, diferenciación e integración de funciones. En la presente revisión se describen las teorías más importantes del crecimiento craneofacial y los factores que las regulan.
Referencias
2. Ahmed MK, Ye X, PJ. T. Review of the Genetic Basis of Jaw Malformations. J Pediatr Genet. 2016;5(4):209-19. doi: 10.1055/s-0036-1593505.
3. Litsas G. Growth hormone therapy and craniofacial bones: a comprehensive review. Oral Dis. 2013;19(6):559-67; doi: 10.1111/odi.12041.
4. Litsas G1, Ari-Demirkaya A. Growth indicators in orthodontic patients. Part 1: comparison of cervical bone age to hand-wrist skeletal age. Relationship with chronological age. Eur J Paediatr Dent. 2010;11(4):176-80.
5. Andalina E. The Consequences of Cranial-Facial Anomalies [Internet]. Northern Illinois University; 2002 [citado 2017 nov 21]. Recuperado a partir de: http://commons.lib.niu.edu/bitstream/handle/10843/17110/41012SLP Andalina%2C Elissa Seaver.pdf?sequence=1&isAllowed=y
6. Baccetti T, Franchi L, McNamara J. The cervical vertebral maturation (CVM) method for the assessment of optimal treatment timing in dentofacial orthopedics. Seminars in Orthodontics. 2005;11(3):119-29.
7. Castaldo G, Cerritelli F. Craniofacial growth: evolving paradigms. Cranio. 2015;33(1):23-31. doi: 10.1179/0886963414Z.00000000042.
8. Singh S, Groves AK. The molecular basis of craniofacial placode development. Wiley Interdiscip Rev Dev Biol. 2016;5(3):363-76. doi: 10.1002/wdev.226.
9. Ranly DM. Craniofacial growth. Dent Clin North Am. 2000;44(3):457-70.
10. Reid RR. Facial skeletal growth and timing of surgical intervention. Clin Plast Surg. 2007;34(3):357-67. doi: 10.1016/j.cps.2007.04.002.
11. Scott JH. The analysis of facial growth from fetal life to adulthood. The Angle Orthodontist. 1963;33(2):110-3.
12. Pritchard JJ, Scott JH, Girgis FG. The structure and development of cranial and facial sutures.TJ Anat. 1956;90(1):73-86.
13. Donnely H et al. Bone and cartilage differentiation of a single stem cell population driven by material interface. J Tissue Eng. 2017;15(8). doi: 10.1177/2041731417705615.
14. Thilander B, Pena L, Infante C, Parada SS, de Mayorga C. Prevalence of malocclusion and orthodontic treatment need in children and adolescent in Bogota, Colombia. Eur J Orthod. 2001;23:153-67.
15. Copray JC, Jansen HW, Duterloo HS. Growth and growth pressure of mandibular condylar and some primary cartilages of the rat in vitro. Am J Orthod Dentofacial Orthop. 1986;90(1):19-28.
16. Brons S, van Beusichem ME, Bronkhorst EM, Draaisma JM, Berge SJ, Schols JG, Kuijpers-Jagtman AM. Methods to quantify soft tissue-based cranial growth and treatment outcomes in children: a systematic review. PLoS One. 2014;7(8):24-35. doi: 10.1371/journal.pone.0089602.
17. Ronning O. Basicranial synchondroses and the mandibular condyle in craniofacial growth. Acta Odontol Scand. 1995;53(3):162-6.
18. Scott JH. The shape of the dental arches. J Dent Res. 1957;36(6):996-1003.
19. Demirjan A, Goldstein H, Tanner JM. A new system of dental age assessment. Human Biology. 1973;45(2):211-27.
20. Opperman LA. Cranial sutures as intramembranous bone growth sites. Dev Dyn. 2000;219(4):472-85.
21. Weinmann JP, Sicher H. Bone and bones. Fundamentals of bone biology. 2nd ed. St. Louis MO.: C.v.mosby Co; 1955.
22. Sicher H. Oral Anatomy. 3rd Edition. St. Louis: The C. V. Mosby Co; 1970.
23. Marks SC Jr, Odgren PR, Popoff SN, Wurtz T. Sutures, growth plates and the craniofacial base—experimental studies in the toothless (tl-osteopetrotic) rat. Ann Acad Med Singapore. 1999;28(5):650-54.
24. Opperman LA, Rawlins JT. The extracellular matrix environment in suture morphogenesis and growth. Cells Tissues Organs. 2005;181(3-4):127-35. Perinetti G, Primožič J, Franchi L, Contardo L. Treatment Effects of Removable Functional Appliances in Pre-Pubertal and Pubertal Class II Patients: A Systematic Review and Meta-Analysis of Controlled Studies. PLoS One. 2015;28(10): doi: 10.1371/journal.pone.0141198.
26. Baccetti T. Improving the effectiveness of functional jaw orthopedics in Class II malocclusion by appropriate treatment timing. Orthod Fr. 2010;81(4):279-86. doi: 10.1051/orthodfr/2010026.
27. Moss ML, Rankow RM. The role of the functional matrix in mandibular growth. Angle Orthod. 1968;38(2):95-103.
28. Moss ML. The role of muscular functional matrices in development and maintenance of occlusion. Bull Pac Coast Soc Orthod. 1970;45(4):29-30.
29. Moss ML. The functional matrix hypothesis revisited. 1. The role of mechanotransduction. Am J Orthod Dentofacial Orthop. 1997;112(1):8-11.
30. Moss ML. The functional matrix hypothesis revisited. 2. The role of an osseous connected cellular network. Am J Orthod Dentofacial Orthop. 1997;112(2):221-6.
31. Moss ML. Twenty years of functional cranial analysis. Am J Orthod. 1972;61(5):479-85.
32. Moss ML. The functional matrix hypothesis revisited. 3. The genomic thesis. Am J Orthod Dentofacial Orthop. 1997;112(3):338-42.
33. Moss ML. The functional matrix hypothesis revisited. 4. The epigenetic antithesis and the resolving synthesis. Am J Orthod Dentofacial Orthop. 1997;112(4):410-7.
34. Moss ML. The differential roles of periosteal and capsular functional matrices in oro-facial growth. Rep Congr Eur Orthod Soc. 1969:193-205.
35. Stutzmann JJ, Petrovic AG. Role of the lateral pterygoid muscle and meniscotemporomandibular frenum in spontaneous growth of the mandible and in growth stimulated by the postural hyperpropulsor. Am J Orthod Dentofacial Orthop. 1990;97(5):381-92.
36. Petrovic AG, Stutzmann JJ, Oudet CL. Control processes in postnatal growth of mandibular condyle cartilage. Rev Iberoam Ortod. 1986;6(1):11-58.
37. Petrovic AG, Stutzmann JJ. Reactive capacity of animal and human condylar cartilage at the cellular and molecular levels in the light of a cybernetic concept of facial growth. Fortschr Kieferorthop. 1988;49(5):405-25.
38. Petrovic AG, Stutzmann JJ, Shambaugh GE Jr. Experimental studies on pathology and therapy of otospongiosis. Am J Otol. 1985;6(1):43-50.
39. Obwegeser HL. Clinical Experience Regarding the Influence of the Condyle on the Growth of the Mandible. In: Mandibular Growth Anomalies. Berlin, Heidelberg: Springer Berlin Heidelberg; 2001 [cited 2017 Nov 21]. p. 49-135.
40. Stutzmann JJ, Petrovic AG, George D. Effect of active retrodisplacement on the growth of the mandible in young rats. Role of the pterygoid muscle and elastic menisco-temporal frenum on the rate and direction of condylar growth. Orthod Fr. 1976;47(0):1-14.
41. Hourfar J, Lisson JA, Gross U, Frye L, Kinzinger GSM. Soft tissue profile changes after Functional Mandibular Advancer or Herbst appliance treatment in class II patients. Clin Oral Investig [Internet]. 2017 [citado 2017 ago 10];1-9 [9 p. aprox.]. Recuperado a partir de: https://link.springer.com/article/10.1007%2Fs00784-017-2177-0. doi:10.1007/s00784-017-2177-0.
42. Kozak FK, Ospina JC. Characteristics of Normal and Abnormal Postnatal Craniofacial Growth and Development. In: Flint PW et al., editor. Cummings Otolaryngology - Head and neck surgery [Internet]. 6th edition. Elsevier; 2014 [citado 2017 nov 21]. Recuperado a partir de: https://clinicalgate.com/characteristics-of-normal-and-abnormal-postnatal-craniofacial-growth-and-development/
43. Owtad P, Potres Z, Shen G, Petocz P, Darendeliler MA. A histochemical study on condylar cartilage and glenoid fossa during mandibular advancement. Angle Orthod. 2011;81(2):270-6. doi: doi: 10.2319/021710-99.1.
44. Neirinckx V, Coste C, Rogister B, Wislet-Gendebien S. Concise review: adult mesenchymal stem cells, adult neural crest stem cells, and therapy of neurological pathologies: a state of play. Stem Cells Transl Med. 2013;2(4):284-96. doi: 10.5966/sctm.2012-0147.
45. Vega-López GA, Cerrizuela S, Aybar MJ. Trunk neural crest cells: formation, migration and beyond. Int J Dev Biol. 2017;61(1):5-15. doi:0.1387/ijdb.160408gv.
46. Furutera T, Takechi M, Kitazawa T, Takei J, Yamada T, Vu Hoang T et al. Differing contributions of the first and second pharyngeal arches to tympanic membrane formation in the mouse and chick. Development. 2017;144(18):3315-3324 doi: 10.1242/dev.149765.
47. Alhadlaq A, Mao JJ. Mesenchymal stem cells: isolation and therapeutics. Stem Cells Dev. 2004;13(4):436-48. doi: 10.1089/scd.2004.13.436.
48. Ward BB, Brown SE, Krebsbach PH. Bioengineering strategies for regeneration of craniofacial bone: a review of emerging technologies. Oral Dis. 2010;16(8):709-16. doi: 10.1111/j.601-0825.2010.01682.x.
49. Hinton RJ. Genes that regulate morphogenesis and growth of the temporomandibular joint: a review. Dev Dyn. 2014;243(7):864-74. doi:10.1002/dvdy.24130.
50. Lattanzi W, Barba M, Di Pietro L, Boyadjiev SA. Genetic advances in craniosynostosis. Am J Med Genet A. 2017;173(5):1406-29. doi:10.002/ajmg.a.38159.
51. Kim SG, Zhou J, Solomon C, Zheng Y, Suzuki T, Chen M et al. Effects of growth factors on dental stem/progenitor cells. Dent Clin North Am. 2012;56(3):563-75. doi: 10.1016/j.cden.2012.05.001.
52. Freire M, Choi JH, Nguyen A, Chee YD, Kook JK, You HK et al. Application of AMOR in craniofacial rabbit bone bioengineering. Biomed Res Int [Internet]. 2015 [citado 2017 feb 5];1-7 [7 p. aprox.]. doi: 10.1155/2015/628769.
53. van Limborgh J. The role of genetic and local environmental factors in the control of postnatal craniofacial morphogenesis. Acta Morphol Neerl Scand. 1972;10(1):37-42.
54. Hall BK. Genetic and epigenetic control of connective tissues in the craniofacial structures. Birth Defects Orig Artic Ser. 1984;20(3):1-17.
55. Ishibashi H, Takenoshita Y, Ishibashi K, Oka M. Expression of extracellular matrix in human mandibular condyle. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1996;81(4):402-14.
56. Wang L, Detamore MS. Tissue engineering the mandibular condyle. Tissue Eng. 2007;13(8):1955-71. Doi: 10.1089/ten.2006.0152.
57. Anasiz Y, Ozgul RK, Uckan-Cetinkaya D. A New Chapter for Mesenchymal Stem Cells: Decellularized Extracellular Matrices. Stem Cell Rev. 2017;13(5):587-597. doi: 10.1007/s12015-017-9757-x.
58. Maycas M, Esbrit P, Gortázar AR. Molecular mechanisms in bone mechanotransduction. Histol Histopathol. 2017;32(8):751-60. doi: 10.14670/HH-11-858.
59. Skerry TM. The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis. Arch Biochem Biophys. 2008;15(473):117-23. doi: 10.1016/j.abb.2008.02.028.
60. Grad S, Eglin D, Alini M, Stoddart MJ. Physical stimulation of chondrogenic cells in vitro: a review. Clin Orthop Relat Res. 2011;469(10):2764-72. doi:10.1007/s11999-011-1819-9.