Computational evaluation of fluid flow through porous membranes

  • Tatiana López Montoya Universidad Pontificia Bolivariana (UPB)
  • Mauricio Giraldo Orozco Universidad Pontificia Bolivariana (UPB)
  • César Nieto Londoño Universidad Pontificia Bolivariana (UPB)
Keywords: CFD, Porous media


In the present article, study of the behavior of flow profiles and pressure associated with the flow of an incompressible fluid across a porous media with different packing conditions is shown. For practical purpose, the porous media was modeled as a staggered packed bed of spheres. The simulation was made in CFD software Fluent. Results showed a great influence of the sphere diameter in the pressure drop. Regarding streaklines, there was found to be a strong interaction between the flows of each sphere downstream. A vortex detachment influenced both by the sphere size and the number of spheres was present in the last layer of the bank of spheres.


Download data is not yet available.

Author Biographies

Tatiana López Montoya, Universidad Pontificia Bolivariana (UPB)

Ingeniera Mecánica, Universidad Pontifica Bolivariana. Investigador auxiliar Grupo de Energía y Termodinámica, Universidad Pontificia Bolivariana, Medellín, Colombia

Mauricio Giraldo Orozco, Universidad Pontificia Bolivariana (UPB)

Ph.D. Ingeniería, Universidad Pontificia Bolivariana. Docente e Investigador Grupo de Energía y Termodinámica, Universidad Pontificia Bolivariana, Medellín, Colombia

César Nieto Londoño, Universidad Pontificia Bolivariana (UPB)

Ph.D. Ingeniería, Universidad Pontificia Bolivariana. Docente e Investigador Grupo de Investigación en Ingeniería Aeroespacial, Universidad Pontificia Bolivariana, Medellín, Colombia


[1] B. Ramos-Alvarado, P. Li, H. Liu, A. Hernández-Gurerrero, “CFD study of liquid-cooled heat sinks with microchannel flow field configurations for electronics, fuel cells, and concentrated solar cells,” Applied Thermal Engineering, vol. 31, no 14, pp. 2494-2507,Oct. 2011.

[2] T. L. Ngo, Y. Kato, K. Nikitin, T. Ishizuka, “Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles,” Experimental Thermal and fluid Science, Vol. 32, No. 2, pp. 560- 570, Nov. 2007.

[3] C. H. Li, P. Hodgins, C.N. Hunter, A.A. Voevodin, J.G. Jones, G.P. Peterson, “ Comparison study of liquid replenishing impacts on critical heat flux and heat transfer coefficient of nucleate pool boiling on multiscale modulated porous structures,” J. Heat and Mass Transfer, vol.54, pp. 3146-3155, May 2011.

[4] Q. Yuan, R.A. Williams, N. Arvanti, “Innovations in high throughput manufacturing of uniform emulsions and capsules,” Advanced Powder Technologies, Vol. 21, No. 6, pp. 599-608, Nov 2010.

[5] B.V. Antohe, J.L. Lage, D.C. Price, R.M. Weber, “Numerical characterization of micro heat exchangers using experimentally tested porous aluminium layers,” Int. J. Heat and Fluid Flow, vol. 17, no. 6, pp. 594-603, Dec 1996.

[6] P.X. Jiang, M.H. Fan, G.S. Si, Z.P. Ren, “Thermal-hydraulic performance of small scale micro-channel and porousmedia heat exchangers,” Int. Journal of Heat and Mass Transfer, Vol. 44. No. 5, pp.1039-1051, Mar 2001.

[7] D. Trebotich,G. Miller, “Simulation of flow and transport at the micro (pore) scale,” 2nd International Conference on Porous Media and its Applications in Sience and Engineering,USA, 17-21 jun. 2007.

[8] M.E. Vanegas, R. Quijada, D. Serafini, “Microporous membrane preparated via thermally induced phase separation from metallocenic syndiotactic polypropylenes,” Polymer, Vol. 50, No. 9, pp. 2081-2086, abr 2009.

[9] S.L. Lee, J.H. Yang, “Modeling of Darcy-Forchheimer drag for fluid flow across a bank of circular cylinders,” Int. J. Heat and Mass Transfer, Vol 40, No. 13, pp 3149-3155, Sep 1997.

[10] C. Nieto, R. Mejía, J. Agudelo, “Dinámica de fluidos computacional aplicada al estudio de regeneradores térmicos,” DYNA, año 71, No. 143, pp. 81-93, Nov 2004.

[11] L.A. Patiño, H.J. Espinoza, D. Suárez, “Convección de calor transitoria en el flujo de fluidos a través de lechos empacados,” Universidad, Ciencia y Tecnología, Vol. 9. No. 36, pp. 210-216, Dic 2005.

[12] M. Giraldo, Y. Ding, R.A. Williams, “ Boundary integral study of nanoparticle flow behavior in the proximity of a solid wall,” Journal of Physics D: Applied Physics, Vol. 41, No. 8, pp. 503 -512, 2008.

[13] A. Faghri, Y. Zhang, J. Howell, Advance Heat and Mass Transfer, Global Digital Press, 2010, p. 956.

[14] A. Bejan, Convection Heat Transfer 3rd ed., Wiley InterScience, New York, 1948. pp. 694. 15] S. Ergun, “Fluid flow through packed columns,” Chemical Engineering Progress, Vol. 48, No. 2, pp. 89-94, 1952._
How to Cite
López Montoya, T., Giraldo Orozco, M., & Nieto Londoño, C. (2012). Computational evaluation of fluid flow through porous membranes. ITECKNE, 9(2), 85-94.
Research and Innovation Articles