Functional assessment system for unmanned aerial navigation systems from the quality of information

  • Leonardo Serna Institución Universitaria ITM
  • JD Grajales-Bustamante Institución Universitaria ITM
  • Miguel Becerra Institución Universitaria Pascual Bravo
Keywords: Information quality, data fusion, Unmanned aerial vehicle, data security


Unmanned aerial navigation systems are not used in many military and non-military applications. However, these systems are susceptible be operated by hackers partially or completely. Therefore, in this article based on the JDL model for safety assessment of the drone’s framework it is proposed. Metrics for each level of the merger in conjunction with a mapping system in order to determine the dependence of data between different levels are proposed, considering the contextual user ratings.


Download data is not yet available.

Author Biographies

Leonardo Serna, Institución Universitaria ITM

MSc. Automatización y Control Industrial. Esp. En Redes Corporativas e Integración de Tecnologías. Institución Universitaria ITM, Medellín Colombia

JD Grajales-Bustamante, Institución Universitaria ITM

MSc. Seguridad Informática. Institución Universitaria ITM, Medellín Colombia


Miguel Becerra, Institución Universitaria Pascual Bravo

MSc. Automatización y Control Industrial. Facultad de Ingeniería. Institución Universitaria Pascual Bravo, Medellín Colombia


[1] A. Rosenfeld and O. Maksimov, “Optimal cruiser-drone traffic enforcement under energy limitation,” Artif. Intell., vol. 277, p. 103166, 2019, doi: 10.1016/j.artint.2019.103166.

[2] X. Zhu, T. J. Pasch, and A. Bergstrom, “Understanding the structure of risk belief systems concerning drone delivery: A network analysis,” Technol. Soc., vol. 62, no. April, p. 101262, 2020, doi: 10.1016/j.techsoc.2020.101262.

[3] R. Nouacer, M. Hussein, H. Espinoza, Y. Ouhammou, M. Ladeira, and R. Castiñeira, “Towards a framework of key technologies for drones,” Microprocess. Microsyst., vol. 77, 2020, doi: 10.1016/j.micpro.2020.103142.

[4] H. Wang, X. Liao, T. Huang, and G. Chen, “Distributed parameter estimation in unreliable WSNs: Quantized communication and asynchronous intermittent observation,” Inf. Sci. (Ny)., vol. 309, pp. 11–25, 2015, doi: 10.1016/j.ins.2015.03.007.

[5] X. Wu and H. Zhu, “Formal analysis of a calculus for WSNs from quality perspective,” Sci. Comput. Program., vol. 154, pp. 134–153, 2018, doi: 10.1016/j.scico.2017.08.007.

[6] C. Zhang, O. Li, Y. Yang, G. Liu, and X. Tong, “Energy-efficient data gathering algorithm relying on compressive sensing in lossy WSNs,” Meas. J. Int. Meas. Confed., vol. 147, 2019, doi: 10.1016/j.measurement.2019.106875.

[7] M. M. Fouad, N. E. Oweis, T. Gaber, M. Ahmed, and V. Snasel, “Data Mining and Fusion Techniques for WSNs as a Source of the Big Data,” Procedia Comput. Sci., vol. 65, no. Iccmit, pp. 778–786, 2015, doi: 10.1016/j.procs.2015.09.023.

[8] X. E. Pantazi, D. Moshou, and D. Bochtis, “Utilization of multisensors and data fusion in precision agriculture,” in Intelligent Data Mining and Fusion Systems in Agriculture, Elsevier, 2020, pp. 103–173.

[9] A. Coen-Porisini and S. Sicari, “Improving data quality using a cross layer protocol in wireless sensor networks,” Comput. Networks, vol. 56, no. 17, pp. 3655–3665, 2012, doi: 10.1016/j.comnet.2012.08.001.

[10] A. R. Pinto, C. Montez, G. Araújo, F. Vasques, and P. Portugal, “An approach to implement data fusion techniques in wireless sensor networks using genetic machine learning algorithms,” Inf. Fusion, vol. 15, pp. 90–101, Jan. 2014, doi: 10.1016/j.inffus.2013.05.003.

[11] D. Wang, J. Liu, and D. Yao, “An energy-efficient distributed adaptive cooperative routing based on reinforcement learning in wireless multimedia sensor networks,” Comput. Networks, vol. 178, no. March, 2020, doi: 10.1016/j.comnet.2020.107313.

[12] S. Qu, L. Zhao, Y. Chen, and W. Mao, “A discrete-time sliding mode congestion controller for wireless sensor networks,” Optik (Stuttg)., vol. 225, no. July 2020, p. 165727, 2021, doi: 10.1016/j.ijleo.2020.165727.

[13] S. S. Marouf, M. C. Bell, P. S. Goodman, J. Neasham, J. Neasham, and A. K. Namdeo, “Comprehensive study of the response of inexpensive low energy wireless sensors for traffic noise monitoring,” Appl. Acoust., vol. 169, p. 107451, 2020, doi: 10.1016/j.apacoust.2020.107451.

[14] M. Jalil Piran et al., “Multimedia communication over cognitive radio networks from QoS/QoE perspective: A comprehensive survey,” Journal of Network and Computer Applications, vol. 172. Academic Press, Dec. 15, 2020, doi: 10.1016/j.jnca.2020.102759.

[15] T. Murugeswari and S. Rathi, “Priority and interference aware multipath routing based communications for extreme surveillance systems,” Comput. Commun., vol. 150, pp. 537–546, Jan. 2020, doi: 10.1016/j.comcom.2019.11.050.

[16] M. Faheem and V. C. Gungor, “MQRP: Mobile sinks-based QoS-aware data gathering protocol for wireless sensor networks-based smart grid applications in the context of industry 4.0-based on internet of things,” Futur. Gener. Comput. Syst., vol. 82, pp. 358–374, May 2018, doi: 10.1016/j.future.2017.10.009.

[17] W. Rehan, S. Fischer, and M. Rehan, “Anatomizing the robustness of multichannel MAC protocols for WSNs: An evaluation under MAC oriented design issues impacting QoS,” Journal of Network and Computer Applications, vol. 121. Academic Press, pp. 89–118, Nov. 01, 2018, doi: 10.1016/j.jnca.2018.06.013.

[18] N. Sharma, B. M. Singh, and K. Singh, “QoS-Based Energy-Efficient Protocols for Wireless Sensor Network,” Sustain. Comput. Informatics Syst., p. 100425, Aug. 2020, doi: 10.1016/j.suscom.2020.100425.

[19] M. Huttunen, “Civil unmanned aircraft systems and security: The European approach,” J. Transp. Secur., vol. 12, no. 3–4, pp. 83–101, Dec. 2019, doi: 10.1007/s12198-019-00203-0.

[20] R. Altawy and A. M. Youssef, “Security, privacy, and safety aspects of civilian drones: A survey,” ACM Trans. Cyber-Physical Syst., vol. 1, no. 2, p. 7, 2017, doi: 10.1145/3001836.

[21] S. S. Wu, “Product Liability Issues in the U.S. and Associated Risk Management,” in Autonomes Fahren, Springer Berlin Heidelberg, 2015, pp. 575–592.

[22] T. Rakha and A. Gorodetsky, “Review of Unmanned Aerial System (UAS) applications in the built environment: Towards automated building inspection procedures using drones,” Automation in Construction, vol. 93. Elsevier B.V., pp. 252–264, Sep. 01, 2018, doi: 10.1016/j.autcon.2018.05.002.

[23] J. Nelson and T. Gorichanaz, “Trust as an ethical value in emerging technology governance: The case of drone regulation,” Technol. Soc., vol. 59, Nov. 2019, doi: 10.1016/j.techsoc.2019.04.007.

[24] R. Luppicini and A. So, “A technoethical review of commercial drone use in the context of governance, ethics, and privacy,” Technol. Soc., vol. 46, pp. 109–119, Aug. 2016, doi: 10.1016/j.techsoc.2016.03.003.

[25] K. Hartmann and C. Steup, “The Vulnerability of UAVs to Cyber Attacks-An Approach to the Risk Assessment,” 2013.

[26] R. Merkert and J. Bushell, “Managing the drone revolution: A systematic literature review into the current use of airborne drones and future strategic directions for their effective control,” J. Air Transp. Manag., vol. 89, Oct. 2020, doi: 10.1016/j.jairtraman.2020.101929.

[27] S. Ings, “The power of drones,” New Sci., vol. 248, no. 3302, p. 33, Oct. 2020, doi: 10.1016/s0262-4079(20)31756-5.

[28] J.-P. Yaacoub, H. Noura, O. Salman, and A. Chehab, “Security analysis of drones systems: Attacks, limitations, and recommendations,” Internet of Things, vol. 11, p. 100218, Sep. 2020, doi: 10.1016/j.iot.2020.100218.

[29] Z. Lv, “The security of Internet of drones,” Comput. Commun., vol. 148, pp. 208–214, Dec. 2019, doi: 10.1016/j.comcom.2019.09.018.

[30] A. Barrientos, J. Del Cerro, P. Gutiérrez, R. San Martín, A. Martínez, and C. Rossi, “Vehículos aéreos no tripulados para uso civil. Tecnología y aplicaciones,” Grup. Robótica y Cibernética, Univ. Politécnica Madrid, pp. 1–29, 2009, Accessed: Nov. 13, 2020. [Online]. Available:ículos_aéreos_no_tripulados_para_uso_civil_Tecnología_y_aplicaciones.

[31] T. Malatinec, V. Popelka, M. Huba, and P. Hudačko, “Laboratory model helicopter control using a lowcost Arduino hardware,” in Proceedings of the 2014 15th International Carpathian Control Conference, ICCC 2014, 2014, pp. 326–331, doi: 10.1109/CarpathianCC.2014.6843621.

[32] A. I. Khan and Y. Al-Mulla, “Unmanned aerial vehicle in the machine learning environment,” in Procedia Computer Science, 2019, vol. 160, pp. 46–53, doi: 10.1016/j.procs.2019.09.442.

[33] F. Outay, H. A. Mengash, and M. Adnan, “Applications of unmanned aerial vehicle (UAV) in road safety, traffic and highway infrastructure management: Recent advances and challenges,” Transp. Res. Part A Policy Pract., vol. 141, pp. 116–129, Nov. 2020, doi: 10.1016/j.tra.2020.09.018.

[34] F. H. Tseng, T. T. Liang, C. H. Lee, L. Der Chou, and H. C. Chao, “A star search algorithm for civil UAV path planning with 3G communication,” in Proceedings - 2014 10th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP 2014, Dec. 2014, pp. 942–945, doi: 10.1109/IIH-MSP.2014.236.

[35] S. Mahmoud and N. Mohamed, “Broker architecture for collaborative UAVs cloud computing,” in 2015 International Conference on Collaboration Technologies and Systems, CTS 2015, Aug. 2015, pp. 212–219, doi: 10.1109/CTS.2015.7210423.

[36] J. Chen, J. Wang, K. F. Tong, and A. A. Allann, “A GPS/Wi-Fi dual-band arc-shaped slot patch antenna for UAV application,” in 2013 Loughborough Antennas and Propagation Conference, LAPC 2013, 2013, pp. 490–493, doi: 10.1109/LAPC.2013.6711948.

[37] “A triple band arc-shaped slot patch antenna for UAV GPS/Wi-Fi applications - IEEE Conference Publication.” (accessed Nov. 13, 2020).

[38] J. B. Hill, “Unmanned aerial systems,” in AUVSI Unmanned Systems 2015, 2015, pp. 119–139, doi: 10.2307/j.ctv7cjw3j.29.

[39] V. Chamola, P. Kotesh, A. Agarwal, Naren, N. Gupta, and M. Guizani, “A Comprehensive Review of Unmanned Aerial Vehicle Attacks and Neutralization Techniques,” Ad Hoc Networks, p. 102324, Oct. 2020, doi: 10.1016/j.adhoc.2020.102324.

[40] M. Rieke, T. Foerster, J. Geipel, and T. Prinz, “HIGH-PRECISION POSITIONING AND REAL-TIME DATA PROCESSING OF UAV-SYSTEMS,” ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XXXVIII-1/, pp. 119–124, Sep. 2012, doi: 10.5194/isprsarchives-xxxviii-1-c22-119-2011.

[41] X. Song, S. Liao, X. Wang, C. Lu, M. Wang, and C. Miao, “A High Precision Autonomous Navigation Algorithm of UAV Based on MEMS Sensor,” in Proceedings of the 2019 IEEE International Conference on Unmanned Systems, ICUS 2019, Oct. 2019, pp. 904–908, doi: 10.1109/ICUS48101.2019.8996061.

[42] X. Wang, Q. Zhou, and C. T. Cheng, “A UAV-assisted topology-aware data aggregation protocol in WSN,” Phys. Commun., vol. 34, pp. 48–57, Jun. 2019, doi: 10.1016/j.phycom.2019.01.012.

[43] D. Zhang and H. Duan, “Switching topology approach for UAV formation based on binary-tree network,” J. Franklin Inst., vol. 356, no. 2, pp. 835–859, Jan. 2019, doi: 10.1016/j.jfranklin.2017.11.026.

[44] Q. L. Han, L. Ding, and X. Ge, “Special issue on recent advances in security and privacy-preserving techniques of distributed networked systems,” Information Sciences, vol. 545. Elsevier Inc., pp. 277–279, Feb. 04, 2021, doi: 10.1016/j.ins.2020.08.014.

[45] “Network Security Bible, 2nd Edition | Wiley.”,+2nd+Edition-p-9780470570005 (accessed Nov. 13, 2020).

[46] B. Z. He, C. M. Chen, Y. P. Su, and H. M. Sun, “A defence scheme against Identity Theft Attack based on multiple social networks,” Expert Syst. Appl., vol. 41, no. 5, pp. 2345–2352, Apr. 2014, doi: 10.1016/j.eswa.2013.09.032.

[47] A. Orebaugh and B. Pinkard, “Nmap OS Fingerprinting,” in Nmap in the Enterprise, Elsevier, 2008, pp. 161–183.

[48] R. Fotohi, E. Nazemi, and F. Shams Aliee, “An agent-based self-protective method to secure communication between UAVs in unmanned aerial vehicle networks,” Veh. Commun., vol. 26, p. 100267, 2020, doi: 10.1016/j.vehcom.2020.100267.

[49] A. Kumari, R. Gupta, S. Tanwar, and N. Kumar, “A taxonomy of blockchain-enabled softwarization for secure UAV network,” Comput. Commun., vol. 161, no. May, pp. 304–323, 2020, doi: 10.1016/j.comcom.2020.07.042.

[50] S. Garg, “Tree-Based Attack – Defense Model for Risk Assessment in Multi-UAV Networks,” no. December 2019, pp. 35–41.

[51] S. Haque, Security and Privacy in Communication Networks - SecureComm 2017 International Workshops, {ATCS} and SePrIoT, Niagara Falls, ON, Canada, October 22-25, 2017, Proceedings, vol. 239. Springer International Publishing, 2018.

[52] H. Zhu, M. L. Cummings, M. Elfar, Z. Wang, and M. Pajic, “Operator Strategy Model Development in UAV Hacking Detection,” IEEE Trans. Human-Machine Syst., vol. 49, no. 6, pp. 540–549, 2019, doi: 10.1109/THMS.2018.2888578.

[53] S. Rodríguez, J. F. De Paz, G. Villarrubia, C. Zato, J. Bajo, and J. M. Corchado, “Multi-agent information fusion system to manage data from a WSN in a residential home,” Inf. Fusion, vol. 23, pp. 43–57, 2015, doi: 10.1016/j.inffus.2014.03.003.

[54] M. M. Fouad, N. E. Oweis, T. Gaber, M. Ahmed, and V. Snasel, “Data Mining and Fusion Techniques for WSNs as a Source of the Big Data,” in Procedia Computer Science, 2015, vol. 65, pp. 778–786, doi: 10.1016/j.procs.2015.09.023.

[55] M. M. Almasri and K. M. Elleithy, “Data fusion models in WSNs: Comparison and analysis,” 2014, doi: 10.1109/ASEEZone1.2014.6820642.

[56] C. Haas, “A model for data fusion in civil engineering,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2006, vol. 4200 LNAI, pp. 315–319, doi: 10.1007/11888598_29.

[57] “(PDF) Revisions and extensions to the JDL data fusion model II.” (accessed Nov. 13, 2020).

[58] E. C. H. Ngai and P. Gunningberg, “Quality-of-information-aware data collection for mobile sensor networks,” Pervasive Mob. Comput., vol. 11, pp. 203–215, 2014, doi: 10.1016/j.pmcj.2013.07.012.

[59] O. Kreibich, J. Neuzil, and R. Smid, “Quality-based multiple-sensor fusion in an industrial wireless sensor network for MCM,” IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 4903–4911, 2014, doi: 10.1109/TIE.2013.2293710.

[60] F. Hermans, N. Dziengel, and J. Schiller, “Quality estimation based data fusion in wireless sensor networks,” in 2009 IEEE 6th International Conference on Mobile Adhoc and Sensor Systems, MASS ’09, 2009, pp. 1068–1070, doi: 10.1109/MOBHOC.2009.5337006.

[61] D. Izadi, J. Abawajy, and S. Ghanavati, “Quality control of sensor network data,” in Lecture Notes in Electrical Engineering, 2011, vol. 122 LNEE, pp. 467–480, doi: 10.1007/978-3-642-25553-3_58.

[62] D. I. Curiac, “Towards wireless sensor, actuator and robot networks: Conceptual framework, challenges and perspectives,” Journal of Network and Computer Applications, vol. 63. Academic Press, pp. 14–23, Mar. 01, 2016, doi: 10.1016/j.jnca.2016.01.013.

[63] E. J. Wright and K. B. Laskey, “Credibility models for multi-source fusion,” 2006, doi: 10.1109/ICIF.2006.301693.

[64] X. Zhao, Y. Jia, A. Li, R. Jiang, and Y. Song, “Multi-source knowledge fusion: a survey,” World Wide Web, vol. 23, no. 4, pp. 2567–2592, Jul. 2020, doi: 10.1007/s11280-020-00811-0.

[65] C. Bisdikian, “On sensor sampling and quality of information: A starting point,” in Proceedings - Fifth Annual IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2007, 2007, pp. 279–284, doi: 10.1109/PERCOMW.2007.88.

[66] “Hard and soft computing methods for capturing and processing phonocardiogram | Request PDF.” (accessed Nov. 13, 2020).

[67] Y. Feng, W. Biyao, and W. Jun, “Effectiveness evaluation of information fusion system oriented to Fusion ability,” in Proceedings - 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer, MEC 2013, 2013, pp. 1399–1403, doi: 10.1109/MEC.2013.6885286.

[68] G. L. Rogova, “Information Quality in Information Fusion and Decision Making with Applications to Crisis Management,” in Fusion Methodologies in Crisis Management, G. Rogova and P. Scott, Eds. Cham: Springer International Publishing, 2016, pp. 65–86.

[69] I. G. Todoran, L. Lecornu, A. Khenchaf, and J. M. Le Caillec, “A methodology to evaluate important dimensions of information quality in systems,” J. Data Inf. Qual., vol. 6, no. 2, 2015, doi: 10.1145/2744205.

[70] S. Schreiber-Ehle and W. Koch, “The JDL model of data fusion applied to cyber-defence — A review paper,” in 2012 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF), Sep. 2012, no. September 2012, pp. 116–119, doi: 10.1109/SDF.2012.6327919.

[71] N. A. Giacobe, “Application of the JDL data fusion process model for cyber security,” in Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2010, Apr. 2010, vol. 7710, p. 77100R, doi: 10.1117/12.850275.
How to Cite
Serna, L., Grajales-Bustamante, J., & Becerra, M. (2021). Functional assessment system for unmanned aerial navigation systems from the quality of information. ITECKNE, 18(2), 108-120.
Research and Innovation Articles