Plástico versus vidrio: una visión del ciclo de vida de los dos materiales controvertidos

Autores/as

DOI:

https://doi.org/10.15332/iteckne.v20i2.3007

Palabras clave:

Basura, Economía Circular, Leyes, Plástico, Polímero, Políticas, Vidrio

Resumen

Desde los últimos años, las prácticas de reutilización y reparación de productos para alargar su vida útil y reducir la generación de residuos ganan interacción. Así como impulsar fuertemente el reciclaje potenciando al máximo la industrialización de materiales para convertir los residuos en nuevos recursos. Por lo tanto, actualmente se discute sobre dos materiales controvertidos (vidrio y plástico). En 2020, se produjeron 385 millones de toneladas de plástico a nivel mundial, en comparación con 143 millones de toneladas de vidrio. En 2020, el consumo per cápita de Vidrio fue de 32 kg al año, en comparación con el Plástico de 105 kg año. Sin embargo, el manuscrito tiene como objetivo discutir el uso de Plástico versus Vidrio para aprender sobre cada material, sus beneficios y desventajas para hacer una perspectiva crítica. La metodología es investigativa recopilando estadísticas de artículos de investigación en el período del 2017 a 2022. Los resultados muestran que la elección entre Vidrio o Plástico depende de factores muy particulares como la aplicación específica en la que se requiere y las preferencias del fabricante o usuario final. Además, es importante destacar que, en comparación con los Plásticos, el Vidrio tiene menos impactos negativos en el cambio climático ya que tiene una menor huella de carbono. Sin embargo, se requiere un enfoque integral para minimizar los efectos del vidrio en el cambio climático debido a su alto consumo de energía, incluidas prácticas de producción eficientes. Se recomienda que cada país defina estadísticas de mercado para la recuperación, reciclaje e industrialización de Vidrio, Plástico y otros artículos como cartón, papel y latas de aluminio para promover la recuperación de residuos y prevenir la contaminación ambiental a nivel mundial.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Sebastián Naranjo Silva, Polytechnic University of Catalonia

Polytechnic University of Catalonia, Barcelona, Spain

Citas

[1] D. Burneo, J. M. Cansino, and R. Yñiguez, “Environmental and Socioeconomic Impacts of Urban Waste Recycling as Part of Circular Economy. The Case of Cuenca (Ecuador),” Sustainability, vol. 12, no. 8, p. 3406, Apr. 2020, doi: 10.3390/su12083406.

[2] MPCEIP and GIZ, Libro Blanco de Economía Circular de Ecuador. Quito - Ecuador, 2021. Accessed: Jul. 03, 2022. [Online]. Available: https://www.produccion.gob.ec/wp-content/uploads/2021/05/Libro-Blanco-final-web_mayo102021.pdf

[3] C. Jacob-Vaillancourt and L. Sorelli, “Characterization of concrete composites with recycled plastic aggregates from postconsumer material streams,” Constr Build Mater, vol. 182, pp. 561–572, Sep. 2018, doi: 10.1016/j.conbuildmat.2018.06.083.

[4] Glass Packaging Institute, “Glass Container Recycling Loop,” Glass Container Recycling Loop, May 2022. https://www.gpi.org/glass-recycling-facts (accessed May 31, 2023).

[5] O. Zapata, “The relationship between climate conditions and consumption of bottled water: A potential link between climate change and plastic pollution,” Ecological Economics, vol. 187, p. 107090, Sep. 2021, doi: 10.1016/j.ecolecon.2021.107090.

[6] J. L. Thomason, “Glass fibre sizing: A review,” Compos Part A Appl Sci Manuf, vol. 127, p. 105619, Dec. 2019, doi: 10.1016/j.compositesa.2019.105619.

[7] D. S. Cousins, Y. Suzuki, R. E. Murray, J. R. Samaniuk, and A. P. Stebner, “Recycling glass fiber thermoplastic composites from wind turbine blades,” J Clean Prod, vol. 209, pp. 1252–1263, Feb. 2019, doi: 10.1016/j.jclepro.2018.10.286.

[8] International Energy Agency, “Market Report Series Renewables 2018 Analysis and Forecast to 2023,” 2018. [Online]. Available: https://www.iea.org/reports/renewables-2018

[9] International Association of Plastic Distribution, “Recycling Performance Plastics: Best Practices,” Recycling Performance Plastics: Best Practices, 2019. https://www.iapd.org/documents/StoreDownloads/Recycling_PP_Best_Practices_UPDATED.pdf (accessed May 31, 2023).

[10] P. Arevalo, K. Quinteros, A. Vivar, and G. Orellana, “Detention of Plastic Microparticles in the Drinking Water Treatment System Tomebamba in Cuenca and Mahuarcay in the City of Azogues, Ecuador,” in Journal of Survey in Fisheries Sciences, 2023, pp. 1–26. doi: https://doi.org/10.17762/sfs.v10i3S.652.

[11] G. Kaur et al., “Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: State-of-the-art review and future challenges,” Materials Science and Engineering: C, vol. 104, p. 109895, Nov. 2019, doi: 10.1016/j.msec.2019.109895.

[12] K. Afshinnia and P. R. Rangaraju, “Influence of fineness of ground recycled glass on mitigation of alkali–silica reaction in mortars,” Constr Build Mater, vol. 81, pp. 257–267, Apr. 2015, doi: 10.1016/j.conbuildmat.2015.02.041.

[13] L. Zhu, D. Luo, and Y. Liu, “Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration,” Int J Oral Sci, vol. 12, no. 1, p. 6, Dec. 2020, doi: 10.1038/s41368-020-0073-y.

[14] W. Ferdous et al., “Recycling of landfill wastes (tyres, plastics and glass) in construction – A review on global waste generation, performance, application and future opportunities,” Resour Conserv Recycl, vol. 173, p. 105745, Oct. 2021, doi: 10.1016/j.resconrec.2021.105745.

[15] P. Guo, W. Meng, H. Nassif, H. Gou, and Y. Bao, “New perspectives on recycling waste glass in manufacturing concrete for sustainable civil infrastructure,” Constr Build Mater, vol. 257, p. 119579, Oct. 2020, doi: 10.1016/j.conbuildmat.2020.119579.

[16] Y. García-Blanco, H. Ripoll-Sierra, H. Ripoll-Goenaga, J. Roldán-Mckinley, and E. Yime-Rodríguez, “Redes de Petri en la Automatización de una Máquina Tampográfica de Plásticos,” Scientia et Technica, vol. 24, no. 1, pp. 35–45, 2019, Accessed: May 01, 2023. [Online]. Available: https://www.redalyc.org/journal/849/84959429004/html/

[17] D. Barrowclough and C. D. Birkbeck, “Transforming the Global Plastics Economy: The Role of Economic Policies in the Global Governance of Plastic Pollution,” Soc Sci, vol. 11, no. 1, Jan. 2022, doi: 10.3390/socsci11010026.

[18] J. P. Muñoz-Pérez et al., “Galápagos and the plastic problem,” Frontiers in Sustainability, vol. 4, Mar. 2023, doi: 10.3389/frsus.2023.1091516.

[19] V. M. Blanchar-Amaya, E. M. Villalba-Manjarres, S. A. Monsalve-Romero, and O. F. Arbelaez-Perez, “Propiedades mecánicas y térmicas de hormigones modificados con residuos plásticos triturados y pelletizados,” ITECKNE, vol. 19, no. 2, Jun. 2022, doi: 10.15332/iteckne.v19i2.2789.

[20] J. G. Portilla-Jiménez, “Análisis del Marco Normativo de Economía Circular en Ecuador Orientado al Sector de los Plásticos,” FIGEMPA: Investigación y Desarrollo, vol. 13, no. 1, pp. 38–47, Feb. 2022, doi: 10.29166/revfig.v13i1.3364.

[21] British Plastics Federation, “Plastics Applications,” Plastics Applications, May 2022. https://www.bpf.co.uk/plastipedia/applications/about_plastics__packaging.aspx (accessed May 31, 2023).

[22] A. Ali Elamin and S. Osman Khairy Ahmed, “Effect of Glass and Plastic Covers on the Performance of Solar Photovoltaic Cells in the Presence of Mud,” Omdurman Islamic University Journal, vol. 18, no. 1, pp. 30–40, Jan. 2022, doi: 10.52981/oiuj.v18i1.1884.

[23] Aquae Fundation, “Plastic or glass bottles?,” Plastic or glass bottles?, Mar. 01, 2023. https://www.fundacionaquae.org/que-es-mejor-las-botellas-de-plastico-o-las-botellas-de-cristal/ (accessed May 31, 2023).

[24] D. Knoblauch and L. Mederake, “Government policies combatting plastic pollution,” Curr Opin Toxicol, vol. 28, pp. 87–96, Dec. 2021, doi: 10.1016/j.cotox.2021.10.003.

[25] J. Palardy, “Conservation Science Program - Solving the plastic pollution problem,” Oxford, 2020. Accessed: May 05, 2023. [Online]. Available: https://www.pewtrusts.org/en/research-and-analysis/articles/2020/07/23/breaking-the-plastic-wave-top-findings

[26] A. L. Patrício Silva et al., “Rethinking and optimising plastic waste management under COVID-19 pandemic: Policy solutions based on redesign and reduction of single-use plastics and personal protective equipment,” Science of The
Total Environment, vol. 742, p. 140565, Nov. 2020, doi: 10.1016/j.scitotenv.2020.140565.

[27] A. Kumar Rai, G. Singh, and A. Kumar Tiwari, “Comparative study of soil stabilization with glass powder, plastic and e-waste: A review,” Mater Today Proc, vol. 32, pp. 771–776, Jan. 2020, doi: 10.1016/j.matpr.2020.03.570.

[28] R. Xiao et al., “Strength, microstructure, efflorescence behavior and environmental impacts of waste glass geopolymers cured at ambient temperature,” J Clean Prod, vol. 252, p. 119610, Apr. 2020, doi: 10.1016/j.jclepro.2019.119610.

[29] A. Mohammadinia, Y. C. Wong, A. Arulrajah, and S. Horpibulsuk, “Strength evaluation of utilizing recycled plastic waste and recycled crushed glass in concrete footpaths,” Constr Build Mater, vol. 197, pp. 489–496, Feb. 2019, doi: 10.1016/j.conbuildmat.2018.11.192.

[30] W. I. Khalil and N. F. Al Obeidy, “Some properties of green concrete with glass and plastic wastes,” IOP Conf Ser Mater Sci Eng, vol. 737, no. 1, p. 012052, Feb. 2020, doi: 10.1088/1757-899X/737/1/012052.

[31] A. Rahimizadeh, J. Kalman, K. Fayazbakhsh, and L. Lessard, “Recycling of fiberglass wind turbine blades into reinforced filaments for use in Additive Manufacturing,” Compos B Eng, vol. 175, p. 107101, Oct. 2019, doi: 10.1016/j.compositesb.2019.107101.

[32] S. Naranjo Silva, D. J. Punina Guerrero, and J. J. Morales Martinez, “Energía solar en paradas de bus una aplicación moderna y vanguardista,” Revista InGenio, vol. 4, no. 1, pp. 58–68, 2021, doi: 10.18779/ingenio.v4i1.368.

[33] C. N. Ngandu, “Compressive Strengths Prediction for Concrete with Partial Plastic Fine Aggregate using Neural Network and Reviews,” ITECKNE, vol. 19, no. 1, pp. 60–69, 2022, doi: 10.15332/iteckne.

[34] Z. Chen, H. Wang, R. Ji, L. Liu, C. Cheeseman, and X. Wang, “Reuse of mineral wool waste and recycled glass in ceramic foams,” Ceram Int, vol. 45, no. 12, pp. 15057–15064, Aug. 2019, doi: 10.1016/j.ceramint.2019.04.242.

[35] D. Amienyo, H. Gujba, H. Stichnothe, and A. Azapagic, “Life cycle environmental impacts of carbonated soft drinks,” Int J Life Cycle Assess, vol. 18, no. 1, pp. 77–92, Jan. 2013, doi: 10.1007/s11367-012-0459-y.

[36] M. Carsana, M. Frassoni, and L. Bertolini, “Comparison of ground waste glass with other supplementary cementitious materials,” Cem Concr Compos, vol. 45, pp. 39–45, Jan. 2014, doi: 10.1016/j.cemconcomp.2013.09.005.

[37] A. L. Patrício Silva et al., “Rethinking and optimising plastic waste management under COVID-19 pandemic: Policy solutions based on redesign and reduction of single-use plastics and personal protective equipment,” Science of The Total Environment, vol. 742, p. 140565, Nov. 2020, doi: 10.1016/j.scitotenv.2020.140565.

[38] W. W. Y. Lau et al., “Evaluating scenarios toward zero plastic pollution,” Science (1979), vol. 369, no. 6510, pp. 1455–1461, Sep. 2020, doi: 10.1126/science.aba9475.

[39] Environmental Investigation Agency, “Convenio sobre la Contaminación por Plásticos: Hacia un nuevo acuerdo global con un enfoque de gobernanza de múltiples capas que aborde la contaminación por plásticos,” 2020. [Online]. Available: https://eia-international.org/wp-content/uploads/Convention-on-Plastic-Pollution_ES.pdf

[40] J. Zheng and S. Suh, “Strategies to reduce the global carbon footprint of plastics,” Nat Clim Chang, vol. 9, no. 5, pp. 374–378, May 2019, doi: 10.1038/s41558-019-0459-z.

[41] R. Geyer, J. R. Jambeck, and K. L. Law, “Production, use, and fate of all plastics ever made,” Sci Adv, vol. 3, no. 7, Jul. 2017, doi: 10.1126/sciadv.1700782.

[42] J. R. Jambeck et al., “Plastic waste inputs from land into the ocean,” Science (1979), vol. 347, no. 6223, pp. 768–771, Feb. 2015, doi: 10.1126/science.1260352.

[43] A. M. Neto, T. S. Gomes, M. Pertel, L. A. V. P. Vieira, and E. B. A. V. Pacheco, “An overview of plastic straw policies in the Americas,” Mar Pollut Bull, vol. 172, p. 112813, Nov. 2021, doi: 10.1016/j.marpolbul.2021.112813.

[44] N. H. E. Ho and C. Not, “Selective accumulation of plastic debris at the breaking wave area of coastal waters,” Environmental Pollution, vol. 245, pp. 702–710, Feb. 2019, doi: 10.1016/j.envpol.2018.11.041.

[45] A. M. Neto, T. S. Gomes, M. Pertel, L. A. V. P. Vieira, and E. B. A. V. Pacheco, “An overview of plastic straw policies in the Americas,” Mar Pollut Bull, vol. 172, p. 112813, Nov. 2021, doi: 10.1016/j.marpolbul.2021.112813.

[46] S. Karuppannan Gopalraj and T. Kärki, “A review on the recycling of waste carbon fibre/glass fibre-reinforced composites: fibre recovery, properties and life-cycle analysis,” SN Appl Sci, vol. 2, no. 3, p. 433, Mar. 2020, doi: 10.1007/s42452-020-2195-4.

Descargas

Publicado

2023-07-11

Cómo citar

Naranjo Silva, S. (2023). Plástico versus vidrio: una visión del ciclo de vida de los dos materiales controvertidos. ITECKNE, 20(2). https://doi.org/10.15332/iteckne.v20i2.3007

Número

Sección

Publicación Anticipada