Predicción de la resistencia del concreto de conchas marinas usando Sistema de Inferencia Adaptativo Neuro-Fuzzy: Un estudio experimental

Autores/as

DOI:

https://doi.org/10.15332/iteckne.v20i1.2917

Palabras clave:

Concreto de concha marina, Polvo de concha marina, Agregado de concha marina, Tiempo de curado, ANFIS, Concreto sostenible

Resumen

La concha marina es una capa exterior dura y protectora creada por un animal que vive en el mar. A menudo se encuentran conchas marinas vacías y lavadas por las olas sobre las playas. Este producto marino puede ser utilizado como reemplazo parcial del agregado grueso en el concreto o del cemento en el concreto. Este artículo describe el uso de polvo de conchas marinas y agregados en el concreto para reemplazar el cemento y los agregados gruesos. El efecto de los residuos de conchas marinas en el concreto fue estudiado en términos de su resistencia a la compresión, resistencia a la tracción y resistencia a la flexión después de 28. 56 y 90 días de curado. El reemplazo de cemento por polvo de conchas marinas fue de 10%, 20% y 30% y el reemplazo de agregado grueso por agregado de concha marina fue 5%, 10% y 15%. Las propiedades del concreto de concha marina fueron comparadas con una muestra de mezcla control de grado M25 de concreto. También se ha intentado predecir la resistencia del concreto de concha marina utilizando un Sistema de Inferencia Adaptativo Neuro-Fuzzy (ANFIS). La predicción de la fuerza con este sistema estuvo de acuerdo con la fuerza experimental con un error mínimo de menos del 5%. Este estudio concluye que el reemplazo parcial de cemento y de agregado grueso por residuos de concha marina aumenta significativamente las propiedades mecánicas del concreto y permite la utilización adecuada de estos desechos de conchas marinas como material sostenible para el concreto.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Sangeetha Palanivelu, Sri Sivasubramaniya Nadar College of Engineering

Department of Civil Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamilnadu, India.

Shanmugapriya Marayanagaraj, Sri Sivasubramaniya Nadar College of Engineering

Department of Mathematics, Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamilnadu, India.

Citas

1. Narendra Kumar Sharma,Praveen Kumar, Sanjeev Kumar, Blessen Skariah Thomas, Ramesh Chandra Gupta(2017) Properties of concrete containing polished granite waste as partial substitution of coarse aggregate. Constr Building Mater 151, pp.158–163.

2. Ghasan Fahim Huseien, Abdul Rahman Mohd Sam, Kwok Wei Shah, A.M.A. Budiea Jahangir Mirza (2019) Utilizing spend garnets as sand replacement in alkali-activated mortars containing fly ash and GBFS. Constr Building Mater 225, pp. 132–145.

3. Zahra Keshavarz, Davood Mostofinejad(2019) Steel chip and porcelain ceramic wastes used as replacements for coarse aggregates in concrete. J Cleaner Produ 230, pp. 339–351.

4. Babita S. Upadhyay S. Gupta K.Abhishek. Yadav M. Sumit, Bindal P. Meena K. Ravi, Kumar Pankaj (2019) Review Paper on Partial Replacement of Cement and Aggregates with Various Industrial Waste Material and Its Effect on Concrete Properties, Lecture Notes in Civil Engineering, pp. 111-117.

5. Ardalan Baradaran-Nasiri, Mahdi Nematzadeh(2017) The effect of elevated temperatures on the mechanical properties of concrete with fine recycled refractory brick aggregate and aluminate cement. Constr Building Mater 147, pp. 865–875.

6. D. Foti, D. Cavallo(2018) Mechanical behavior of concretes made with non-conventional organic origin calcareous aggregates. Constr Building Mater 179, pp. 100–106.

7. A.E. Richardson, T. Fuller(2013) Sea shells used as partial aggregate replacement in concrete Emerald Insight: Newcastle upon Tyne, UK, Stuct. Surv. pp. 347–354.

8. Medina, C, De Rojas, M.S, Frías, M(2012) Reuse of sanitary ceramic wastes as coarse aggregate in eco-efficient concretes. Cement Concr. Compos. 34, pp. 48-54.

9. Medina, C, Frías, M, De Rojas, M.S(2012) Microstructure and properties of recycled concretes using ceramic sanitary ware industry waste as coarse aggregate. Constr. Build. Mater. 31, pp. 112-118.

10. Higashiyama, H, Yagishita, F, Sano, M Takahashi, O(2012) Compressive strength and resistance to chloride penetration of mortars using ceramic waste as fine aggregate. Constr. Build. Mater. 26, pp. 96-101.

11. Torkittikul, P, Chaipanich, A(2010) Utilization of ceramic waste as fine aggregate within Portland cement and fly ash concretes. Cement Concr. Compos. 32, pp. 440 – 449.

12. Ay, N, Unal, M(2000) The use of waste ceramic tile in cement production. Cement Concr. Res. 30, pp. 497 – 499.

13. Pereira-de-Oliveira, L.A, Castro-Gomes, J.P, Santos, P.M(2012) The potential pozzolanic activity of glass and red-clay ceramic waste as cement mortars components. Constr. Build. Mater. 31, pp.197 – 203.

14. Bernal SA, Rodríguez ED, Kirchheim AP, Provis JL(2016) Management and valorisation of wastes through use in producing alkali-activated cement materials. J Chem Technol Biotechnol. 91, pp. 2365–2388.

15. N. Drouiche, P. Cuellar, F. Kerkar, S. Medjahed, N. Boutouchent-Guerfi, M.O. Hamou(2014) Recovery of solar grade silicon from kerf loss slurry waste, Renew. Sust. Energy Rev. 32, pp. 936–943.

16. H.S.G.K. Murthy(2015) Evolution and present status of silicon carbide slurry recovery in silicon wire sawing, Resour. Conserv. Recy. 104, pp. 194–205.

17. S.A. Sergiienko, B.V. Pogorelov, V.B. Daniliuk(2014) Silicon and silicon carbide powders recycling technology from wire-saw cutting waste in slicing process of silicon ingots, Sep. Purif. Technol. 133, pp. 16–21.

18. Engr. Abdul Ghanyoor khan. Bazid khan (2017) Effect of Partial Replacement of Cement by Mixture of Glass Powder and Silica Fume Upon Concrete Strength, Int. J. Engg. Works. 4, pp.124-135.

19. H. Torkian, Z. Keshavarz (2018) Determining the Drift in Reinforced Concrete Building Using ANFIS Soft Computing Modeling, Computational Engineering and Physical Modeling 1-1, pp. 1-11.

20. F. Khademi, S. M. Jamal, N. Deshpande, S. Londhe(2016) Predicting strength of recycled aggregate concrete using Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System and Multiple Linear Regression, International Journal of Sustainable Built Environment. 5, pp. 355–369.

21. H Madani, M. Kooshafar, M. Emadi(2020) Compressive Strength Prediction of Nanosilica-Incorporated Cement Mixtures Using Adaptive Neuro-Fuzzy Inference System and Artificial Neural Network Models, Pract. Period. Struct. Des. Constr., 25(3): 04020021.

22. P.Sangeetha, M. Shanmugapriya(2019) Numerical Study on FRP Wrapped Concrete Columns Under Compression, Indian Journal of Science and Technology. 12(15), pp. 1-7.

23. P.Sangeetha, M. Shanmugapriya (2020) Prediction of Mechanical Strength of Polypropylene Fiber Reinforced Concrete Using Artificial Neural Network, Building Materials and Structures, Lecture notes in Civil Engineering. 63, pp. 79-86.

24. P. Sangeetha, M. Shanmugapriya (2021) Fatigue life prediction of Brass and En-24 using soft computing tool, Material Today: Proceedings. 38, pp. 2912–2918.

25. P. Sangeetha, M. Shanmugapriya (2020) Prediction of Mechanical strength of polypropylene fibre reinforced concrete using Artificial Neural Network, GRAĐEVINSKI MATERIJALI I KONSTRUKCIJE (BUILDING MATERIALS AND STRUCTURES). 63(4), pp. 79-86.

26. P. Sangeetha, M. Shanmugapriya (2020) GFRP wrapped concrete column compressive strength prediction through neural network, SN Applied Sciences. 2, pp. 20-36.

27. J.-S.R. Jang(1993) ANFIS: adaptive-network-based fuzzy inference system, IEEE Transactions on Systems, Man, and Cybernetics. 23(3), pp.665-685.

28. Mosavi, S.M., Nik, A.S (2015) Strengthening of steel–concrete composite girders using carbon fibre reinforced polymer (CFRP) plates. Sadhana. 40 (1), pp. 249–261.

29. J.-S.R. Jang, C.-T. Sun, E. Mizutani (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence, Prentice Hall, Upper Saddle River, New Jersey.

30. J. S. R. Jang and C. T. Sun (1995) Neuro-fuzzy modeling and control, Proceedings of the IEEE. 8(3), pp. 378–406.

31. Bureau of Indian Standards (BIS) Concrete Mix Proportioning. IS: 10262:2009, New Delhi, India; 2009.

32. Bureau of Indian Standards (BIS) Methods of tests for strength of concrete. IS: 516:1959, New Delhi, India; 1959.

Descargas

Publicado

2023-07-11

Cómo citar

Palanivelu, S., & Marayanagaraj, S. (2023). Predicción de la resistencia del concreto de conchas marinas usando Sistema de Inferencia Adaptativo Neuro-Fuzzy: Un estudio experimental. ITECKNE, 20(1), 34–44. https://doi.org/10.15332/iteckne.v20i1.2917

Número

Sección

Artículos de Investigación e Innovación