Estudio comparativo del desempeño del concreto reforzado con fibra de caryota urens de diferentes grados junto con técnicas de procesamiento digital de imágenes

Autores/as

  • Vijayalakshmi Ramalingam Sri Sivasubramaniya Nadar College of Engineering https://orcid.org/0000-0003-4678-2020
  • Mohamed Sameer Sri Sivasubramaniya Nadar College of Engineering
  • Geetha Ramalingam Saveetha University

DOI:

https://doi.org/10.15332/iteckne.v19i2.2827

Palabras clave:

Fibra de cariota, Procesamiento digital de imagenes, Análisis de regresión, Resistencia a la tracción

Resumen

Este trabajo de investigación se enfoca en el efecto de la fibra vegetal natural de caryota urens como refuerzo en las propiedades de resistencia del concreto de diferentes grados. Se añadieron a la mezcla de hormigón fibras de 10 mm, 20 mm y 30 mm de longitud en una proporción del 3% del contenido de ligante. Se agregaron tres fibras de diferentes longitudes en una fracción de volumen fijo a los grados de concreto M30, M40 y M50. Se investigaron las características de trabajabilidad y las propiedades mecánicas de doce mezclas diferentes de hormigón reforzado con fibras. El efecto de las fibras en el comportamiento posterior al agrietamiento de la muestra de concreto se investigó utilizando la técnica de procesamiento de imágenes digitales y las imágenes del sistema de medición de video. Se formularon ecuaciones empíricas para establecer la relación entre la resistencia a la compresión y otras propiedades mecánicas del hormigón utilizando el gráfico de regresión lineal desarrollado. Del estudio se puede concluir que la fibra de cariota con un rico contenido de celulosa contribuye a detener las grietas en la etapa inicial de la carga y evita un mayor plano de grietas en la región posterior al pico. Las fibras contribuyen principalmente a aumentar la resistencia a la tracción del hormigón. El efecto de las fibras es más prominente en la mezcla de concreto M30 en comparación con las mezclas de concreto M40 y M50. Este trabajo de investigación se centra principalmente en la aplicación de fibras vegetales naturales en el hormigón como refuerzo.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Vijayalakshmi Ramalingam, Sri Sivasubramaniya Nadar College of Engineering

Sri Sivasubramaniya Nadar College of Engineering, Rajiv Gandhi salai (OMR), Kalavakkam, Chennai, 603110, India.

Mohamed Sameer, Sri Sivasubramaniya Nadar College of Engineering

Sri Sivasubramaniya Nadar College of Engineering, Rajiv Gandhi salai (OMR), Kalavakkam, Chennai, 603110, India.

Geetha Ramalingam, Saveetha University

Saveetha school of Engineering, Saveetha University, Chennai 602105, India.

Citas

[1] S. M. Rangappa, S. Siengchin, and H. N. Dhakal, “Green-composites: Ecofriendly and sustainability,” Appl. Sci. Eng. Prog., vol. 13, no. 3, pp. 183–184, 2020, doi: 10.14416/j.asep.2020.06.001.

[2] Z. Zhang, H. Zhang, Y. Gao, and H. Kang, “Laboratory evaluation of the effect of kapok fibers on the rheological and fatigue properties of bitumen,” Constr. Build. Mater., vol. 272, p. 121819, 2021, doi: 10.1016/j.conbuildmat.2020.121819.

[3] D. Badagliacco, B. Megna, and A. Valenza, “Induced Modification of Flexural Toughness of Natural Hydraulic Lime Based Mortars by Addition of Giant Reed Fibers,” Case Stud. Constr. Mater., vol. 13, p. e00425, 2020, doi: 10.1016/j.cscm.2020.e00425.

[4] S. Niyasom and N. Tangboriboon, “Development of biomaterial fillers using eggshells, water hyacinth fibers, and banana fibers for green concrete construction,” Constr. Build. Mater., vol. 283, no. March, p. 122627, 2021, doi: 10.1016/j.conbuildmat.2021.122627.

[5] S. S. Kumar and V. M. Raja, “Processing and determination of mechanical properties of Prosopis juliflora bark, banana and coconut fiber reinforced hybrid bio composites for an engineering field,” Compos. Sci. Technol., vol. 208, no. March, p. 108695, 2021, doi: 10.1016/j.compscitech.2021.108695.

[6] D. Vanaja and S. Kavitha, “A Study on the Bioefficacy of Caryota Urens L.,” World J. Pharm. Res., vol. 6, no. 4, pp. 1381–1398, 2017, doi: 10.20959/wjpr20174-8223.

[7] L. Yang et al., “Superabsorbent Fibers for Comfortable Disposable Medical Protective Clothing,” Adv. Fiber Mater., vol. 2, no. 3, pp. 140–149, 2020, doi: 10.1007/s42765-020-00044-w.

[8] S. Yamuna Devi and S. Grace Annapoorani, “Physical and thermal characterization of natural fibre extracted from Caryota urens spadix fibre,” Indian J. Fibre Text. Res., vol. 44, no. 2, pp. 193–198, 2019.

[9] H. H. Muhaisen, “Flavonoids from the Base Leaves of Caryota Urens (Palmae),” Adv. Sci. Eng. Med., vol. 6, no. 11, pp. 1225–1229, 2015, doi: 10.1166/asem.2014.1631.

[10] S. Tasnuva, S. R. Md, S. Sirajis, and N. Kamrun, “Biological activities of Bonsupari (Caryota urens L.) fruits,” African J. Pharm. Pharmacol., vol. 14, no. 3, pp. 46–50, 2020, doi: 10.5897/ajpp2020.5118.

[11] P. Sabarinathan, K. Rajkumar, V. E. Annamalai, and K. Vishal, “Characterization on chemical and mechanical properties of silane treated fish tail palm fibres,” Int. J. Biol. Macromol., vol. 163, pp. 2457–2464, 2020, doi: 10.1016/j.ijbiomac.2020.09.159.

[12] Ganesh Babu L, “Investigation on the Mechanical and Morphological Characteristics of Caryota Urens Spadix Fibre Reinforced With Polyester Composites,” J. Balk. Tribol. Assoc., vol. 26, no. 8, pp. 128–169, 2020.

[13] C. . Venkata Prasad, K. . Narayana, and V. . Subba Rao, “Surface modification-Caryota fiber.pdf,” Int. J. Mech. Prod. Eng. Res. Dev., vol. 10, no. 3, pp. 1423–1432, 2020.

[14] R. Shetty, R. Pai, A. B. V. Barboza, and V. P. Gandhi, “Processing, mechanical charaterization and its tribological study of discontinously reinforced Caryota Urens Fibre Polyester composites,” ARPN J. Eng. Appl. Sci., vol. 13, no. 12, pp. 3920–3928, 2018.

[15] G. Sai Krishnan, L. Ganesh Babu, P. Kumaran, G. Yoganjaneyulu, and J. Sudhan Raj, “investigation of caryota urens fibers on physical, chemical, mechanical and tribological properties for brake pad applications,” Mater. Res. express, vol. 2, pp. 1–15, 2019.

[16] R. Sathia and R. Vijayalakshmi, “Fresh and mechanical property of caryota-urens fiber reinforced flowable concrete,” J. Mater. Res. Technol., vol. 15, pp. 3647–3662, 2021, doi: 10.1016/j.jmrt.2021.09.126.

[17] T. F. Yuan, J. Y. Lee, K. H. Min, and Y. S. Yoon, “Experimental investigation on mechanical properties of hybrid steel and polyethylene fiber-reinforced no-slump high-strength concrete,” Int. J. Polym. Sci., vol. 2019, 2019, doi: 10.1155/2019/4737384.

[18] X. Zhou, S. H. Ghaffar, W. Dong, O. Oladiran, and M. Fan, “Fracture and impact properties of short discrete jute fibre-reinforced cementitious composites,” Mater. Des., vol. 49, pp. 35–47, 2013, doi: 10.1016/j.matdes.2013.01.029.

[19] D. Vafaei, R. Hassanli, X. Ma, J. Duan, and Y. Zhuge, “Sorptivity and mechanical properties of fiber-reinforced concrete made with seawater and dredged sea-sand,” Constr. Build. Mater., vol. 270, p. 121436, 2021, doi: 10.1016/j.conbuildmat.2020.121436.

[20] D. V. Soulioti, N. M. Barkoula, A. Paipetis, and T. E. Matikas, “Effects of fibre geometry and volume fraction on the flexural behaviour of steel-fibre reinforced concrete,” Strain, vol. 47, no. SUPPL. 1, pp. 535–541, 2011, doi: 10.1111/j.1475-1305.2009.00652.x.

[21] D. Zhang, J. Yu, H. Wu, B. Jaworska, B. R. Ellis, and V. C. Li, “Discontinuous micro-fibers as intrinsic reinforcement for ductile Engineered Cementitious Composites (ECC),” Compos. Part B Eng., vol. 184, no. January, p. 107741, 2020, doi: 10.1016/j.compositesb.2020.107741.

[22] M. S. Islam and S. J. Ahmed, “Influence of jute fiber on concrete properties,” Construction and Building Materials, vol. 189. pp. 768–776, 2018, doi: 10.1016/j.conbuildmat.2018.09.048.

[23] M. Mastali and A. Dalvand, “Use of silica fume and recycled steel fibers in self-compacting concrete,” Constr. Build. Mater., vol. 125, pp. 196–209, 2016, doi: 10.1016/j.conbuildmat.2016.08.046.

[24] V. R. Sivakumar, O. R. Kavitha, G. P. Arulraj, and V. G. Srisanthi, “Applied Clay Science An experimental study on combined e ff ects of glass fi ber and Metakaolin on the rheological , mechanical , and durability properties of self-compacting concrete,” Appl. Clay Sci., vol. 147, no. July, pp. 123–127, 2017, doi: 10.1016/j.clay.2017.07.015.

[25] A. Karimipour, M. Ghalehnovi, J. De Brito, and M. Attari, “The effect of polypropylene fibres on the compressive strength , impact and heat resistance of self-compacting concrete,” Structures, vol. 25, no. December 2019, pp. 72–87, 2020, doi: 10.1016/j.istruc.2020.02.022.

[26] S. N. R. R. Prakash, R. Thenmozhi, “Mechanical characterisation and flexural performance of eco-friendly concrete produced with fly ash as cement replacement and coconut shell coarse aggregate,” Int. J. Environ. Sustain. Dev., vol. 18, no. 2, 2019.

[27] S. Chakraborty, S. P. Kundu, A. Roy, R. K. Basak, B. Adhikari, and S. B. Majumder, “Improvement of the mechanical properties of jute fibre reinforced cement mortar: A statistical approach,” Constr. Build. Mater., vol. 38, pp. 776–784, 2013, doi: 10.1016/j.conbuildmat.2012.09.067.

[28] C. Unterweger et al., “Impact of fiber length and fiber content on the mechanical properties and electrical conductivity of short carbon fiber reinforced polypropylene composites,” Compos. Sci. Technol., vol. 188, no. January, p. 107998, 2020, doi: 10.1016/j.compscitech.2020.107998.

[29] A. Zia and M. Ali, “Behavior of fiber reinforced concrete for controlling the rate of cracking in canal-lining,” Constr. Build. Mater., vol. 155, pp. 726–739, 2017, doi: 10.1016/j.conbuildmat.2017.08.078.

[30] M. Karamloo, O. Afzali-naniz, and A. Doostmohamadi, “Impact of using different amounts of polyolefin macro fibers on fracture behavior , size effect , and mechanical properties of self-compacting lightweight concrete,” Constr. Build. Mater., vol. 250, p. 118856, 2020, doi: 10.1016/j.conbuildmat.2020.118856.

[31] A. Razmi and M. M. Mirsayar, “On the mixed mode I/II fracture properties of jute fiber-reinforced concrete,” Constr. Build. Mater., vol. 148, pp. 512–520, 2017, doi: 10.1016/j.conbuildmat.2017.05.034.

[32] G. Silva, S. Kim, R. Aguilar, and J. Nakamatsu, “Natural fibers as reinforcement additives for geopolymers – A review of potential eco-friendly applications to the construction industry,” Sustain. Mater. Technol., vol. 23, p. e00132, 2020, doi: 10.1016/j.susmat.2019.e00132.

[33] C. S. Ramaiah Prakash, Rajagopal Thenmozhi, Sudharshan N. Raman, “Characterization of eco-friendly steel fiber-reinforced concrete containing waste coconut shell as coarse aggregates and fly ash as partial cement replacement,” Int. J. Environ. Sci. Technol., vol. 21, no. 1, pp. 437–447, 2020, [Online]. Available: https://onlinelibrary.wiley.com/doi/epdf/10.1002/suco.201800355.

[34] A. S. Wahyuni, F. Supriani, Elhusna, and A. Gunawan, “The performance of concrete with rice husk ash, sea shell ash and bamboo fibre addition,” Procedia Eng., vol. 95, no. Scescm, pp. 473–478, 2014, doi: 10.1016/j.proeng.2014.12.207.

[35] M. S. Islam and S. J. Ahmed, “Influence of jute fiber on concrete properties,” Constr. Build. Mater., vol. 189, pp. 768–776, 2018, doi: 10.1016/j.conbuildmat.2018.09.048.

[36] F. Iucolano, L. Boccarusso, and A. Langella, “Hemp as eco-friendly substitute of glass fibres for gypsum reinforcement: Impact and flexural behaviour,” Compos. Part B Eng., vol. 175, no. March, p. 107073, 2019, doi: 10.1016/j.compositesb.2019.107073.

[37] X. Zhou, S. H. Ghaffar, W. Dong, O. Oladiran, and M. Fan, “Fracture and impact properties of short discrete jute fibre-reinforced cementitious composites,” Mater. Des., vol. 49, pp. 35–47, 2013, doi: 10.1016/j.matdes.2013.01.029.

[38] E. Awwad, M. Mabsout, B. Hamad, M. T. Farran, and H. Khatib, “Studies on fiber-reinforced concrete using industrial hemp fibers,” Constr. Build. Mater., vol. 35, no. 2012, pp. 710–717, 2012, doi: 10.1016/j.conbuildmat.2012.04.119.

[39] R. Prakash, S. N. Raman, N. Divyah, C. Subramanian, C. Vijayaprabha, and S. Praveenkumar, “Fresh and mechanical characteristics of roselle fibre reinforced self-compacting concrete incorporating fly ash and metakaolin,” Constr. Build. Mater., vol. 290, p. 123209, 2021, doi: 10.1016/j.conbuildmat.2021.123209.

[40] F. A. Almansour, H. N. Dhakal, and Z. Y. Zhang, “Investigation into Mode II interlaminar fracture toughness characteristics of flax/basalt reinforced vinyl ester hybrid composites,” Compos. Sci. Technol., vol. 154, pp. 117–127, 2018, doi: 10.1016/j.compscitech.2017.11.016.

[41] M. A. Alam and K. Al Riyami, “Shear strengthening of reinforced concrete beam using natural fibre reinforced polymer laminates,” Constr. Build. Mater., vol. 162, pp. 683–696, 2018, doi: 10.1016/j.conbuildmat.2017.12.011.

[42] N. Divyah, R. Thenmozhi, and M. Neelamegam, “Strength properties and durability aspects of sintered-fly-ash lightweight aggregate concrete,” Mater. Tehnol., vol. 54, no. 3, pp. 301–310, 2020, doi: 10.17222/MIT.2019.101.

[43] M. Pajak, “Investigation On Flexural Properties of Hybrid Fibre Reinforced Self-Compacting Concrete,” vol. 161, pp. 121–126, 2016, doi: 10.1016/j.proeng.2016.08.508.

[44] F. Grzymski, M. Musiał, and T. Trapko, “Mechanical properties of fibre reinforced concrete with recycled fibres,” Constr. Build. Mater., vol. 198, pp. 323–331, 2019, doi: 10.1016/j.conbuildmat.2018.11.183.

Descargas

Publicado

2022-06-13

Cómo citar

Ramalingam, V., Sameer, M., & Ramalingam, G. (2022). Estudio comparativo del desempeño del concreto reforzado con fibra de caryota urens de diferentes grados junto con técnicas de procesamiento digital de imágenes. ITECKNE, 19(2), 120–131. https://doi.org/10.15332/iteckne.v19i2.2827

Número

Sección

Artículos de Investigación e Innovación