Propiedades mecánicas y térmicas de hormigones modificados con residuos plásticos triturados y pelletizados
DOI:
https://doi.org/10.15332/iteckne.v19i2.2789Palabras clave:
Conductividad térmica, Plástico pelletizado, Plástico triturado, Propiedades térmicas, Tereftalato de polietilenoResumen
El carácter no biodegradable de los residuos plásticos tiene un efecto negativo sobre el medio ambiente. La valorización del plástico en la producción de hormigón con menor conductividad térmica puede contribuir a la disminución de la energía consumida para mantener el confort térmico al interior de los edificios. El presente estudio reporta la preparación de mezclas y cilindros de hormigón con residuos plásticos triturados y pelletizados como reemplazo (1.7%, 3.4% y 5%) de los agregados finos. Se evaluó la densidad, la resistencia a compresión y la conductividad térmica. Los resultados evidenciaron una disminución en la densidad y la conductividad térmica con el aumento del contenido de desechos plásticos triturados y pelletizados. Asimismo, los residuos plásticos triturados tienen un efecto negativo al disminuir la resistencia. El hormigón con 3,4% de residuos plásticos pelletizados presenta la mayor resistencia. La adición de plásticos pelletizados mejora las propiedades mecánicas y térmicas del hormigón modificado.
Descargas
Citas
[2] H. M. Hamada et al., “Sustainable use of palm oil fuel ash as a supplementary cementitious material: A comprehensive review,” Journal of Building Engineering, vol. 40, pp. 102286, 2021, DOI: 10.1016/j.jobe.2021.102286.
[3] J. Chai and J. Fan, “Advanced thermal regulating materials and systems for energy saving and thermal comfort in buildings,” Materials Today Energy, vol. 24, pp. 100925, 2022, DOI: 10.1016/j.mtener.2021.100925.
[4] G. Thakur, M. Asalam, and M. El Ganaoui, “Energy efficient building envelope using waste PET in concrete,” MATEC Web of Conferences, vol. 307, pp. 01022, 2020, DOI: 10.1051/matecconf/202030701022.
[5] P. Shafigh, I. Asadi, and N. B. Mahyuddin, “Concrete as a thermal mass material for building applications - A review,” Journal of Building Engineering., vol. 19, pp. 14–25, 2018, DOI: 10.1016/j.jobe.2018.04.021.
[6] A. Karaki, M. Mohammad, E. Masad, and M. Khraisheh, “Case Studies in Thermal Engineering Theoretical and computational modeling of thermal properties of lightweight concrete,” Case Studies in Thermal Engineering., vol. 28, pp. 101683, 2021, DOI: 10.1016/j.csite.2021.101683.
[7] Z. Misri, M. H. W. Ibrahim, A. S. M. A. Awal, M. S. M. Desa, and N. S. Ghadzali, “Review on factors influencing thermal conductivity of concrete incorporating various type of waste materials,” IOP Conference Series: Earth and Environmental Science, vol. 140 (1), pp. 012141, 2018, DOI: 10.1088/1755-1315/140/1/012141.
[8] I. Asadi, P. Shafigh, Z. F. Bin, A. Hassan, and N. B. Mahyuddin, “Thermal conductivity of concrete- A review”, vol. 20, pp. 81-93, Journal of Building Engineering, 2018, DOI: 10.1016/j.jobe.2018.07.002.
[9] Z. Liu, X. Yuan, Y. Zhao, J. Wei, and H. Wang, “Concrete waste-derived aggregate for concrete manufacture,” Journal of Cleaner Production, vol. 338, pp. 130637, 2022, DOI: 10.1016/j.jclepro.2022.130637.
[10] Association of plastic manufactures, “Plastics - the Facts 2020”, [online], available: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2020/, [accesed: Feb. 17, 2022].
[11] J. Huang, A. Veksha, W. Ping, A. Giannis, and G. Lisak, “Chemical recycling of plastic waste for sustainable material management : A prospective review on catalysts and processes,” Renewable. Sustainable Energy Review, vol. 154, pp. 111866, 2022, DOI: 10.1016/j.rser.2021.111866.
[12] L. Gu and T. Ozbakkaloglu, “Use of recycled plastics in concrete: A critical review,” Waste Management., vol. 51, pp. 19–42, 2016, doi: 10.1016/j.wasman.2016.03.005.
[13] C. N. Ngandu, “Compressive strength prediction for glass aggregates incorporated concrete, using neural network and reviews,” Iteckne, vol. 19 (2), pp. 61–68, 2022, DOI: 10.15332/iteckne.v19i2.2769.
[14] B. Abu-jdayil, A. Mourad, W. Hittini, M. Hassan, and S. Hameedi, “Traditional , state-of-the-art and renewable thermal building insulation materials: An overview,” Construction and Building Materials, vol. 214, pp. 709–735, 2019, DOI: 10.1016/j.conbuildmat.2019.04.102.
[15] C. Xue, M. Yu, H. Xu, L. Xu, M. Saafi, and J. Ye, “Experimental study on thermal performance of ultra-high performance concrete with coarse aggregates at high temperature,” Construction and Building Materials, vol. 314, pp. 125585, 2022, DOI: 10.1016/j.conbuildmat.2021.125585.
[16] A. A. Sayadi, J. V Tapia, T. R. Neitzert, and G. C. Clifton, “Effects of expanded polystyrene ( EPS ) particles on fire resistance , thermal conductivity and compressive strength of foamed concrete,” Construction and Building Materials, vol. 112, pp. 716–724, 2016, DOI: 10.1016/j.conbuildmat.2016.02.218.
[17] Y. Xu, L. Jiang, J. Liu, Y. Zhang, J. Xu, and G. He, “Experimental study and modeling on effective thermal conductivity of EPS lightweight concrete,” vol. 11 (2), pp. 1–13, 2016, DOI: 10.1299/jtst.2016jtst0023.
[18] R. Demirboga and A. Kan, “Thermal conductivity and shrinkage properties of modified waste polystyrene aggregate concretes,” Construction and Building Materials, vol. 35, pp. 730–734, 2012, DOI: 10.1016/j.conbuildmat.2012.04.105.
[19] A. Dixit, S. D. Pang, S. H. Kang, and J. Moon, “Lightweight structural cement composites with expanded polystyrene (EPS) for enhanced thermal insulation,” Cement and Concrete Composites., vol. 102, pp. 185–197, 2019, DOI: 10.1016/j.cemconcomp.2019.04.023.
[20] S. I. Basha, M. R. Ali, S. U. Al-Dulaijan, and M. Maslehuddin, “Mechanical and thermal properties of lightweight recycled plastic aggregate concrete,” Journal of Building Engineering., pp. 101710, 2020, DOI: 10.1016/j.jobe.2020.101710.
[21] M. Belmokaddem, A. Mahi, Y. Senhadji, and B. Y. Pekmezci, “Mechanical and physical properties and morphology of concrete containing plastic waste as aggregate,” Construction and Building Materials, vol. 257, pp. 119559, 2020, DOI: 10.1016/j.conbuildmat.2020.119559.
[22] O. F. Arbelaez-Perez, J. F. Venites-Mosquera, Y. M. Córdoba-Palacios, and K. P. Mena-Ramírez, “Propiedades mecánicas de concretos modificados con plástico marino reciclado en reemplazo de los agregados finos,” Revista. Politécnica, vol. 16 (31), pp. 77–84, 2020, DOI: 10.33571/rpolitec.v16n31a6.
[23] F. K. Alqahtani, G. Ghataora, M. I. Khan, and S. Dirar, “Novel lightweight concrete containing manufactured plastic aggregate,” Journal of Building Engineering, vol. 148, pp. 386–397, 2017, DOI: 10.1016/j.conbuildmat.2017.05.011.
[24] M. E. Kangavar, W. Lokuge, A. Manalo, W. Karunasena, and M. Frigione, “Investigation on the properties of concrete with recycled polyethylene terephthalate (PET) granules as fine aggregate replacement,” Case Studies in Construction Materials., vol. 16, pp. e00934, 2022, DOI: 10.1016/j.cscm.2022.e00934.
[25] Instituto Colombiano de Normas Técnicas y Certificación, “NTC 550. Elaboracion y Curado de Especimenes de Concreto para Ensayos de Laboratorio,” [online], available: https://www.academia.edu/38869298/NORMA_TECNICA_COLOMBIANA_NTC_550. [accesed: Dec. 15, 2021]
[26] V. G. Ajey Kumar, M. Karthik, and M. Keshava, “Production of recycled plastic coarse aggregates and its utilization in concrete,” International Journal of Emerging Trends in Engineering Research., vol. 8 (8) pp. 4118–4122, 2020, DOI: 10.30534/ijeter/2020/14882020.
[27] O. Y. Marzouk, R. M. Dheilly, and M. Queneudec, “Valorization of post-consumer waste plastic in cementitious concrete composites”, Waste Management, vol. 27 (2), pp. 310–318, 2007, DOI: 10.1016/j.wasman.2006.03.012.
[28] L. Pezzi, P. De Luca, D. Vuono, F. Chiappetta, and A. Nastro, “Concrete products with waste’s plastic material (bottle, glass, plate),” Materials Science Forum, vol. 516, pp. 1753–1758, 2006, DOI: 10.4028/www.scientific.net/MSF.514-516.1753.
[29] M. Gesoglu, E. Güneyisi, O. Hansu, S. Etli, and M. Alhassan, “Mechanical and fracture characteristics of self-compacting concretes containing different percentage of plastic waste powder,” Construction and Building Materials, vol. 140, pp. 562–569, 2017, DOI: 10.1016/j.conbuildmat.2017.02.139.
[30] X. Li, T. Ling, and K. Hung, “Functions and impacts of plastic / rubber wastes as eco-friendly aggregate in concrete – A review,” Construction and Building Materials, vol. 240, p. 117869, 2020, DOI: 10.1016/j.conbuildmat.2019.117869.
[31] I. Rahmouni, G. Promis, A. R’mili, H. Beji, and O. Limam, “Effect of carbonated aggregates on the mechanical properties and thermal conductivity of eco-concrete,” Construction and Building Materials, vol. 197, pp. 241–250, 2019, DOI: 10.1016/j.conbuildmat.2018.11.210.
[32] M. A. Al-osta, A. S. Al-tamimi, S. M. Al-tarbi, O. S. B. Al-amoudi, W. A. Al-awsh, and T. A. Saleh, “Development of sustainable concrete using recycled high-density polyethylene and crumb tires : Mechanical and thermal properties,” Journal of Building Engineering, vol. 45, pp. 103399, 2022, DOI: 10.1016/j.jobe.2021.103399.
[33] A. Boucedra, M. Bederina, and Y. Ghernouti, “Study of the acoustical and thermo-mechanical properties of dune and river sand concretes containing recycled plastic aggregates,” Construction and Building Materials, vol. 256, pp. 119447, 2020, DOI: 10.1016/j.conbuildmat.2020.119447.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
La revista ITECKNE se encuentra registrada bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional Por lo tanto, esta obra se puede reproducir, distribuir y comunicar públicamente, siempre que se reconozca el nombre de los autores y a la Universidad Santo Tomás. Se permite citar, adaptar, transformar, autoarchivar, republicar y crear a partir del material, siempre que se reconozca adecuadamente la autoría, se proporcione un enlace a la obra original y se indique si se han realizado cambios.
La Revista ITECKNE no retiene los derechos sobre las obras publicadas y los contenidos son responsabilidad exclusiva de los autores, quienes conservan sus derechos morales, intelectuales, de privacidad y publicidad. Sin embargo esta facultada para editar, publicar, reproducir y distribuir tanto en medios impresos como digitales, además de incluir el artículo en índices internacionales y/o bases de datos, de igual manera, se faculta a la editorial para utilizar las imágenes, tablas y/o cualquier material gráfico presentado en el artículo para el diseño de carátulas o posters de la misma revista.


