Producción y uso de pellets de biomasa para la generación de energía térmica: una revisión a los modelos del proceso de gasificación
DOI:
https://doi.org/10.15332/iteckne.v9i1.2743Palabras clave:
Biomasa, Energías renovables, Gasificación, Pellets, PirólisisResumen
La necesidad de generar energía térmica y eléctrica, el calentamiento global causado por el aumento en las emisiones de gases de efecto invernadero, el incremento en los precios de los combustibles fósiles y la búsqueda de independencia energética, han creado una nueva industria enfocada en la generación de energía mediante el aprovechamiento de fuentes renovables. Dentro de las distintas opciones, la biomasa se constituye como la tercera principal fuente para la obtención de energía eléctrica y como la principal fuente para la generación de energía térmica. Sin embargo, los problemas relacionados con la baja densidad de los distintos tipos de biomasa y la dificultad para transportarla y almacenarla han causado la necesidad de generar productos sólidos con mayor densidad, dureza y más resistentes conocidos como pellets y briquetas. El presente trabajo busca desarrollar un análisis de la situación actual de la producción de pellets y los posibles usos que tienen, enfocándose principalmente en la revisión de los estudios de modelamiento desarrollados para el proceso de gasificación.
Descargas
Citas
[2] REN21, Renewables 2011 Global Status Report, 2011.
[3] E. Comission,Renewable Energy Technologies en: Long Term Research in the 6th Framework Programme, 2007.
[4] N. Lior, Sustainable neregy development: The present (2009) situation and possible paths to the future, Energy, 35 (2010) 3976-3994.
[5] F.S. Vargas, C. Guerrero, J. Arango, Tecnologías para el aprovechamiento de los Biocombustibles, Universidad Nacional de Colombia, Bogotá, 2008.
[6] J.G. Speight, Synthetic Fuels Handbook. Properties, process and performance, McGraw Hill, 2008.
[7] M. Parikka, Global biomass fuel resources, Biomass and Bioenergy, 27 (2004) 613-620.
[8] UPME, Análisis y revisión de los objetivos de política energética colombiana de largo plazo y actualización de sus estrategias de desarrollos, 2010.
[9] C. Highman, M.v.d. Burgt, Gasification, Elsevier, 2003.
[10] C.A. Forero, G. Díaz, L.C. Hernández, J.N. Arroyo, F.S. Vargas, Solid Biofuels production from Timber, Coconut and Oil Palm residues bypressing at Universidad Nacional de Colombia, en: The third international environmental best practices conference, Hochschule Offenburg, Offenburg, 2011, pp. 84.
[11] N. Kaliyan, R.V. Morey, Densification of Biomass: Mechanisms, Models and experiments on Briquetting and Pelleting of Biomass, Saarbrücken, Germany, 2008.
[12] I. Obernberger, G. Thek, Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour, Biomass and Bioenergy, 27 (2004) 653-669.
[13] M. Peksa-Blanchard, P. Dolzan, A. Grassi, J. Heinimo, M. Junginger, T. Ranta, A. Walter, Global Wood Pellets Markets and Industry: Policy drivers, market status and raw material potential, IEA Bioenergy, 2007.
[14] Pelletsa@las, English Handbook for wood pellet combustion, 2009.
[15] J. Vinterbäck, Pellets 2002: the first world conference of pellets, Biomass and Bioenergy, 27 (2004) 513-520.
[16] M. Cocchi,Global wood pellet industry Market and Trade study, IEA Bioenergy, 2011.
[17] G.D. Giacomo, L. Taglieri, Renewable energy benefits with conversion of woody residues to pellets, Energy, 34 (2009) 724-731.
[18] K. Mahapatra, L. Gustavsson, R. Madlener, Bioenergy Innovations: The case of wood pellet system in Sweden, Technology Analysis & Strategic Management, 19 (2007) 99-125.
[19] M. Selkimäki, B. Mola-Yudego, D. Röser, R. Prinz, L. Sikanen,Present and future trends in pellets markets, raw materials and supply logistics in Sweden and Finland, Renewable and Sustainable Energy Reviews, 14 (2010) 3068-3075.
[20] H. Lund, The implementation of renewable energy systems. Lessons learned from the Danish case, Energy, 35 (2010) 4003-4009.
[21] M. Stähl, K. Granström, J. Berghel, R. Renström, Industrial processes for biomass drying and their effects on the quality properties of wood pellets, Biomass and Bioenergy, 27 (2004) 621-628.
[22] M. Stähl, J. Berghel, Validation of a mathematical model by studying the effects of recirculation of drying gases, Drying Technology, 26 (2008) 786-792.
[23] Monsanto Chemical Company, Method of Making Pellets,patente US 2436766, Estados Unidos, 1948.
[24] Waste technology transfer Inc, Pelletizing and briquetting of combustible organic-waste materials using binders produced by liquefaction of biomass, patente US 6506223 B2, Estados Unidos, 2003.
[25] Georgia Pacific Corporation, Pelletizing wood, patente US 4612017, Estados Unidos, 1986.
[26] P. Lethikangas, Quality properties of pelletised sawdust, logging residues and bark, Biomass and Bioenergy, 20 (2001) 351-360.
[27] N. Kaliyan, M.R. Vance, Factors affecting stregth and durability of densified biomass products, Biomass and Bioenergy, 33 (2009) 337-359.
[28] N. Kaliyan, R.V. Morey, Constitutive model for densification of corn stoer and switchgrass, Biosystems engineering, 104 (2009) 47 - 63.
[29] P. Adapa, L.T.G. Schoenau, Compression characteristics of selected ground agricultural biomass, en Agricultural Engineering International: The CIGR Ejournal, Manuscript 1347, 2009.
[30] C.A. Forero, E.G. Agular, A. Cediel, F.E. Sierra, Evaluación de los modelos de densificación para combustibles sólidos a partir de mezclas aserrín y carbón mineral a bajas presiones, en: VII Jornada Internacional Ciencia Tecnología y Sociedad, Universidad Cooperativa de Colombia, Bogotá Colombia, 2011, pp. 40 - 55.
[31] L. Shang, N. Nielsen, J. Dahl, W. Stelte, Quality effects caused by torrefaction of pellets made from Scots pine, Fuel Processing Technology, 101 (2012), 23-38.
[32] Pelletsa@las, Final report on producers, traders and consumers of wood pellets, 2009.
[33] S. Voulgarakai, A. Balafoutis, G. Papadakis, Development and promotion of a transparent European pellets market: creation of a European real-time pellets atlas. 2009
[34] C. Gilbe, M. Öhman, E. Lindström, D. Boström, R. Backman, S. Robert, J. Burvall, Slagging characteristics during residential combustion of biomass pellets, Energy & Fuels, 22 (2008) 3536- 3543.
[35] M. Olsson, J. Kjällstrand, Emissions from burning of softwood pellets, Biomass and Bioenergy, 27 (2004) 607-611.
[36] H. Wiinika, R. Gebart, The influence of fuel type on particle emissions in combustion of biomass pellets, Combustion Science and Technology, 177 (2010) 741-763.
[37] K. Gröransson, U. Söderlind, J. He, W. Zhang, Review of syngas production via biomass DFBGs, Renewable and Sustainable Energy Reviews, 15 (2010) 482-492.
[38] H. Thunman, F. Niklasson, F. Johnsson, B. Leckner, Composition of volatile gases and thermo chemical properties of wood for modeling of fixed or fluidized beds, Energy & Fuels, 15 (2001) 1488 - 1497.
[39] M. Olsson, J. Kjällstrand, G. Petersson, Specific chimney emissions and biofuel characteristics of softwood pellets for residential heating in Sweden, Biomass and Bioenergy, 24 (2003) 51 - 57.
[40] J. Rath, G. Staudinger,Cracking reactions of tar from pyrolysis of spruce wood, Fuel, 80 (2001) 1379-1389.
[41] C. Erlich, E. Björnbom, D. Bolado, M. Giner, T.H. Fransson, Pyrolysis and gasification of pellets from sugar cane bagasse and wood, Fuel, 85 (2006) 1535-1540.
[42] S.S. Kim, J. Kim, Y.-H. Park, Y.-K. Park, Pyrolysis kinetics and decomposition characteristics of pine trees, Bioresource Technology, 101 (2010) 9797-9802.
[43] P. Wang, L. Jin, J. Liu, S. Zhu, H. Hu, Analysis of coal tar derived from pyrolysis at different atmospheres, Fuel, In Press (2010).
[44] S.M. Andresen, S.T. Pedersen, B. Gobel, N. Houbak, U. Henriksen, Pyrolysis of thermally thick wood particles- experiments and mathematical modelling,en: Proceedings of ECOS 2005, Trondheim Norway, 2005.
[45] M.G. Gronli, M.C. Melaaen, Mathematical model for wood pyrolysis- Comparison of experimental measurements with model predictions, Energy & Fuels, 14 (2000) 791-800.
[46] K.M. Bryden, K.W. Ragland, Numerical modeling of a deep, fixed bed combustor, Energy & Fuels, 10 (1996) 269 - 275.
[47] M. Dogru, C.R. Howarth, G. Akay, B. Keskinler, A.A. Malik, Gasification of hazelnut shells in a downdraft gasifier, Energy, 27 (2002) 415-427.
[48] T.K. Kayal, M. Chakravarty, G.K. Biswas, Mathematical modelling of steady state updraft gasification of jute stick particles of definite sizes packed randomly - an analytical approach, Bioresource Technology, 60 (1997) 131 - 141.
[49] A. Melgar, J.F. Pérez, H. Laget, A. Horillo, Thermochemical equilibrium modelling of a gasficatying process, Energy Conversion and Management, 48 (2007) 59 - 67.
[50] X.T. Li, J.R. Grace, C.J. Lim, A.P. Watkinson, H.P. Chen, J.R. Kim, Biomass gasification in a circulating fluidized bed, Biomass and Bioenergy, 26 (2004) 171 - 193.
[51] C. Mandl, I. Obernberger, F. Biedermann, Modeling of an updraft fixed-bed gasifier operated with softwood pellets, Fuel, 89 (2010) 3795-3806.
[52] B.V. Babu, P.N. Sheth, Modeling and simulation of reduction zone dwondraft biomass gasifier: Effect of char reactivity factor, Energy Conversion and Management, 47 (2006) 2602 - 2611.
[53] M.L.d.S.-. Santos, Solid Fuels Combustion and Gasification. Modeling, Simulation and Equipment Operation, Marcel Dekker Inc, New York, 2004.
[54] P. Kaushal, J. Abedi, N. Mahinpey, A comprehensive mathematical model for biomass gasification in a bubbling fluidized bed reactor, Fuel, 89 (2010) 3650-3661.
[55] Z. Deng, R. Xiao, B. Jin, H. Huang, L. Shen, Q. Song, Q. Li, Computational fluid dynamics modeling of coal gasification in a pressurized spoutfluid bed, Energy & Fuels, 22 (2008) 1560-1569.
[56] Z.A.B.Z. Alauddin, P. Lahijani, M. Mohammadi, A.R. Mohamed, Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review, Renewable and Sustainable Energy Reviews, 14 (2010) 2852-2862.
[57] C. Erlich, T.H. Fransson, Downdraft gasification of pellets made of wood, palm-oil reisudues respective bagasse: Experimental study, Aplied Energy, 88 (2011) 899-908.
[58] W. Klose, M. Wölki, On the intrinsic reaction rate of biomass char gasification with carbon dioxide and steam, Fuel, 84 (2005) 885-892.
[59] J. Cooper, W.L.H. Halleth, A numerical model for packed-bed combustion of char particles, Chemical Engineering Science, 55 (2000) 4451 -4460.
[60] C.D. Blasi, G. Signorelli, G. Portoricco, Countercurrent fixed-bed gasification of Biomass at laboratory scale, Ind. Eng. Chem. Res., 38 (1999) 2571-2581.
[61] M.U. Ghani, P.T. Radulovic, S.L. Douglas, An improved model for fixed-bed coal combustion and gasification: sensitivity analysis and applications, Fuel, 75 (1996) 1213-1226.
[62] M. Puig-Arnavat, C.J. Bruno, A. Coronas, Review and analysis of biomass gasification models, Reneainable Energy Reviews, 14 (2010) 2841- 2851.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
La revista ITECKNE se encuentra registrada bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional Por lo tanto, esta obra se puede reproducir, distribuir y comunicar públicamente, siempre que se reconozca el nombre de los autores y a la Universidad Santo Tomás. Se permite citar, adaptar, transformar, autoarchivar, republicar y crear a partir del material, siempre que se reconozca adecuadamente la autoría, se proporcione un enlace a la obra original y se indique si se han realizado cambios.
La Revista ITECKNE no retiene los derechos sobre las obras publicadas y los contenidos son responsabilidad exclusiva de los autores, quienes conservan sus derechos morales, intelectuales, de privacidad y publicidad. Sin embargo esta facultada para editar, publicar, reproducir y distribuir tanto en medios impresos como digitales, además de incluir el artículo en índices internacionales y/o bases de datos, de igual manera, se faculta a la editorial para utilizar las imágenes, tablas y/o cualquier material gráfico presentado en el artículo para el diseño de carátulas o posters de la misma revista.