Modelo de optimización en la gestión de inventarios mediante algoritmos genéticos

Autores/as

  • César Hernando Valencia Niño Universidad Santo Tomás
  • Silvia Nathalia Cáceres Quijano Instituto Alberto Luiz Coimbra (COPPE)

DOI:

https://doi.org/10.15332/iteckne.v8i2.2731

Palabras clave:

Algoritmos genéticos, Efecto bullwhip, Optimización de inventarios, Coeficientes BMN

Resumen

Este artículo presenta el diseño de un Algoritmo Genético (AG) que permita optimizar la gestión de inventarios en las cadenas de suministros y minimizar el Efecto Bullwhip, para esto, fueron considerados los costos de depósito, distribución y fabricación del producto además del costo individual de los elementos que serán pedidos. La cadena utilizada en la simulación contiene 5 niveles: cliente, minorista, depósito, distribuidor y fábrica, así las cantidades para cada par fueron consideradas para ser evaluadas por el AG en el mejor cromosoma. Adicionalmente, fue utilizado el modelo de coeficientes BMN para generar la función de evaluación de los cromosomas escogidos por el AG y así satisfacer las restricciones consideradas en el modelo.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

César Hernando Valencia Niño, Universidad Santo Tomás

D.Sc.(c) da Engenharia Elétrica Pontifícia Universidade Católica do Rio de Janeiro. Investigador Grupo GRAM Universidad Santo Tomás USTA Bucaramanga, Colombia

Silvia Nathalia Cáceres Quijano, Instituto Alberto Luiz Coimbra (COPPE)

M.Sc.(c) da Engenharia de Produção Universidade Federal do Rio de Janeiro. Pesquisadora Programa de Engenharia de Produção Instituto Alberto Luiz Coimbra - COPPE Rio de Janeiro, Brasil

Citas

[1] J.VonNeuman, «The Theory of Self-Reproducing Automata», University of Illinois Press, Urbana, 1996.

[2] J. Forrester, «Industrial Dynamics», Harvard Business Review. Boston, n. 36, Julio-Agosto 1958.

[3] L. H. Lee, V. Padmanabhan y S. Whang, «Information Distortion in a Supply Chain: The Bullwhip Effect», Management Science, Vol. 50, No. 12, Diciembre 2004.

[4] S. Chopra y P. Meindl, «Gerenciamento da Cadeia de Suprimentos – Estratégica, Planejamento e Operação», São Paulo: Prentice Hall, 2003.

[5] J. P. P. Dias, 2003, «Gestão dos estoques numa cadeia de distribuição com sistema de reposição automática e ambiente colaborativo», Disertación de Maestría – Programa de Post-graduación enIngenieríade Producción Escuela Politécnica de la Universidad de San Pablo.

[6] J. Lu, P. Humphreys, R. McIvor, y L. Maguire, «Employing Genetic Algorithms to minimise the Bullwhip Effect in an online efficient-responsive supply chain», en 2009 IEEE/INFORMS International Conference on Service Operations, Logistics and Informatics, Chicago, IL, USA, 2009, pp. 117-122.

[7] E. Hill y W. Stevenson, «A New Method of Determining Loss Coefficients», IEEE Transactions on Power Apparatus and Systems, vol. 87, no. 7, pp. 1548-1553, Jul. 1968.

[8] G. Kumaran y V. S. R. K. Mouly, «Using evolutionary computation to solve the economic load dispatch problem», en Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), Seoul, South Korea, pp. 296-301.

[9] H. Happ, «Optimal Power Dispatch», IEEE Transactions on Power Apparatus and Systems, vol. 93, no. 3, pp. 820-830, May. 1974.

[10] LanshunNie, XiaofeiXu, y Dechen Zhan, «Collaborative Planning in Supply Chains by Lagrangian Relaxation and Genetic Algorithms», en 2006 6th World Congress on Intelligent Control and Automation, Dalian, China, 2006, pp. 7258-7262.

[11] P. Radhakrishnan, V. M. Prasad, y M. R. Gopalan, «Genetic Algorithm Based Inventory Optimization Analysis in Supply Chain Management», en 2009 IEEE International Advance Computing Conference, Patiala, India, 2009, pp. 418-422.

[12] J. Lu, P. Humphreys, R. McIvor, y L. Maguire, «Employing genetic algorithms to minimise the bullwhip effect in a supply chain», en 2007 IEEE International Conference on Industrial Engineering and Engineering Management, Singapore, 2007, pp. 1527-1531.

[13] R. Perumalsamy y J. Natarajan, «Predictive analytics using Genetic Algorithm for efficient supply chain inventory optimization», in 2010 Second International conference on Computing, Communication and Networking Technologies, Karur, India, 2010, pp. 1-8.

[14] W. Jianhua y H. Xianfeng, «A hybrid genetic algorithm for agile supply chain scheduling optimization», en 2010 2nd International Conference on Future Computer and Communication, Wuhan, China, 2010, pp. V1-396-V1-400.

[15] N. P. Joseph y G. Radhamani, «Determining Robust Solutions in Supply Chain Using Genetic Algorithm», en 2010 International Conference on Data Storage and Data Engineering, Bangalore, India, 2010, pp. 275-277.

Descargas

Publicado

2011-12-12

Cómo citar

Valencia Niño, C. H., & Cáceres Quijano, S. N. (2011). Modelo de optimización en la gestión de inventarios mediante algoritmos genéticos. ITECKNE, 8(2), 156–162. https://doi.org/10.15332/iteckne.v8i2.2731

Número

Sección

Artículos de Investigación e Innovación