Modelamiento de procesos hidrológicos aplicando técnicas de inteligencia artificial: una revisión sistemática de la literatura

Autores/as

DOI:

https://doi.org/10.15332/iteckne.v19i1.2645

Palabras clave:

Modelamiento hidrológico, Inteligencia artificial, Aprendizaje automático, Red Neuronal, Evapotranspiración, Escorrentía, Precipitación

Resumen

El campo de la hidrología es una de las ciencias que se enfoca en el estudio, la planificación y la cuantificación del recurso hídrico, generando una magnitud significativa de datos, los cuales son indispensables en la rama de la ingeniería civil. Actualmente dichos datos son analizados por una variedad de técnicas, que entre las predominantes son las de inteligencia artificial (IA) exclusivamente aplicadas al modelamiento de procesos hidrológicos como lluvia-escorrentía, inundaciones, sequías, evapotranspiración, nivel de lagos y predicción de caudales. El presente documento realizó una revisión sistemática de la literatura publicadas entre los años 2015 al 2021 en las diversas bases de datos como, Scopus, Springer Link, EBSCOhost, SciELO y ScienceDirect. Para ello se estableció un proceso de protocolo en el cual se introduce la base de datos seleccionada, definición de términos de búsqueda y filtros de selección. En efecto después de considerar el proceso de protocolo se obtuvieron 50 artículos indexados además de 4 artículos y 1 libro de páginas web. Como consecuencia se encontró que las redes neuronales artificiales (RNA) son las técnicas más utilizadas para el modelamiento de procesos hidrológicos donde con innovadores lenguajes de programación se pueden codificar con mucha mayor versatilidad. A la fecha el uso de RNA se las está implementando con otras técnicas para generar modelos híbridos que permiten obtener mejores estimaciones.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Willians Franklin Rafael Miñope

Ingeniería Civil, Universidad Señor de Sipán, Pimentel, Perú

Pedro Victor Raúl Vilcherres Lizárraga

Ingeniería Civil, Universidad Señor de Sipán, Pimentel, Perú

Sócrates Pedro Muñoz Pérez

Doctor, Universidad Señor de Sipán, Pimentel, Perú

Victor Alexci Tuesta Monteza

Magister, Universidad Señor de Sipán, Pimentel, Perú

Heber Ivan Mejía Cabrera

Magister, Universidad Señor de Sipán, Pimentel, Perú

Citas

I. Ayala, J. Oré, D. Requena, R. Oré, E. Torres and E. Montes, "Flow routing in the natural channel of the Ichu river experimental basin through artificial neural networks," Journal of Environmental Science and Engineering, vol. 7, pp. 387-403, 2018, doi:10.17265/2162-5298/2018.10.001.

S. K. Mishra, S. Rupper, S. Kapnick, H. G. Chan, E. Ciraci, U. Haritashya, J. Hayse, J. S. Kargel, R. B. Kayastha, N. Y. Krakauer, S. V. Kumar, R. B. Lammers, V. Maggioni, S. A. Margulis, M. Olson, B. Osmanoglu, Y. Qian, S. McLarty, K. Rittger, D. R. Rounce, D. Shean, I. Velicogna, T. D. Veselka and A. Arendt, "Grand challenges of hydrologic modeling for food-energy-water nexus security in high mountain Asia," Frontiers in Water, vol. 3, 2021, doi: 10.3389/frwa.2021.728156.

J. Rodrigo Comino, M. López Vicente, V. Kumar, A. Rodríguez Seijo, O. Valkó, C. Rojas, H. Reza Pourghasemi, L. Salvati, N. Bakr, E. Vaudour, E. C. Brevik, M. Radziemska, M. Pulido, S. Di Prima, M. Dondini, W. De Vries, E. S. Santos, M. d. L. Mendonça
Santos, Y. Yu and P. Panagos, "Soil science challenges in a new era: A transdisciplinary overview of relevant topics," Air, Soil and Water Research, vol. 13, pp. 1-17, 2020, doi: 10.1177/1178622120977491.

R. Zhang, R. Zen, J. Xing, D. M. S. Arsa, A. Saha and S. Bressan, "Hydrological process surrogate modelling and simulation with neural networks," Advances in Knowledge Discovery and Data Mining, vol. 12085, p. 449–461, 2020, doi:10.1007/978-3-030-47436-2_34.

Y. Liu, T. Zhang, A. Kang, J. Li and X. Lei, "Research on runoff simulations using deep-learning methods," Sustainability, vol. 13, no. 3, pp. 1336-1356, 2021, doi:10.3390/su13031336.

A. Nath, F. Mthethwa and G. Saha, "Runoff estimation using modified adaptive neuro-fuzzy inference system," Environmental Engineers, vol. 25, no. 4, pp. 545-553, 2020, doi:10.4491/eer.2019.166.

E. M. Villena Martínez, J. I. Torregrosa Lopez and V. G. Lo Iacono Ferreira, "State of the art of hydrological models and suitability in basins with limited information," 22nd International Congress on Project Management and Engineering, pp. 4-13, 2018.

C. Hu, Q. Wu, H. Li, S. Jian, N. Li and Z. Lou, "Deep learning with a long short-term memory networks approach for rainfall-runoff simulation," Water, vol. 10, no. 11, pp. 1543-1558, 2018, doi:10.3390/w10111543.

F. Kratzert, D. Klotz, M. Herrnegger, A. K. Sampson, S. Hochreiter and G. S. Nearing, "Toward improved predictions in ungauged basins: Exploiting the power of machine learning," Water Resources Research, vol. 55, no. 12, pp. 11344-11354, 2019, doi:10.1029/2019WR026065.

H. Fan, M. Jiang, L. Xu, H. Zhu, J. Cheng and J. Jiang, "Comparison of long short term memory networks and the hydrological model in runoff simulation," Water, vol. 12, no. 1, pp. 175-190, 2020, doi:10.3390/w12010175.

Y. Chih Chieh, L. Wen Cheng and C. Chung-En, "Genetic algorithm and fuzzy neural networks combined with the hydrological modeling system for forecasting watershed runoff discharge," Neural Computing and Applications, vol. 26, pp. 1631-1643, 2015, doi:10.1007/s00521-015-1832-0.

A. Mosavi, "Flood prediction using machine learning models: Literature review," Atmospheric Science, 2020.

B. K. Roodsari, D. G. Chandler, C. Kelleher and C. N. Kroll, "A comparison of SAC-SMA and ANFIS for real-time flood forecasting in small urban catchments," Journal of Flood Risk Management, vol. 12, no. S1, pp. 12492- 12505, 2019, doi:10.1111/jfr3.12492.

P. Jimeno, J. Senent, J. Pérez, D. Pulido and J. M. Cecilia, "Estimation of instantaneous peak flow using machine-learning models and empirical formula in peninsular Spain," Water, vol. 9, no. 5, pp. 347-359, 2017, doi:10.3390/w9050347.

B. Banadkooki Fatemeh, V. P. Singh and M. Ehteram, "Multi-timescale drought prediction using new hybrid artificial neural network models network models," Natural Hazards, vol. 106, no. 3, pp. 2461-2478, 2021, doi:10.1007/s11069-021-04550-x.

M. Hashemi and A. R. Sepaskhah, "Evaluation of artificial neural network and penman–monteith equation for the prediction of barley standard evapotranspiration in a semi-arid region," Theoretical and Applied Climatology, vol. 139, pp. 275-285, 2020, doi:10.1007/s00704-019-02966-x.

Z. M. Yaseen, S. Naghshara, S. Q. Salih, S. Kim, A. Malik and M. A. Ghorbani, "Lake water level modeling using newly developed hybrid data intelligence model," Theoretical and Applied Climatology, vol. 141, pp. 1285-1300, 2020, doi:10.1007/s00704-020-03263-8.

N. Nabipour, M. Dehghani, S. Shamshirband and A. Mosavi, "Short-term hydrological drought forecasting based on different nature-inspired optimization algorithms hybridized with artificial neural networks," IEEE Access, vol. 8, no. 8951168, pp. 15210-15222, 2020, doi:10.1109/ACCESS.2020.2964584.

M. Getachew Mehabie and L. Yuei An, "Application of artificial neural networks in forecasting a standardized precipitation evapotranspiration index for the upper blue nile basin," Water, vol. 12, no. 3, pp. 643-661, 2020, doi:10.3390/w12030643.

M. K. Nema, D. Khare and S. K. Chandniha, "Application of artificial intelligence to estimate the reference evapotranspiration in sub-humid Doon valley," Applied Water Science, vol. 7, pp. 3903-3910, 2017, doi:10.1007/s13201-017-0543-3.

S. Mehdizadeh, J. Behmanesh and K. Khalili, "Evaluating the performance of artificial intelligence methods for estimation of monthly mean soil temperature without using meteorological data," Environmental Earth Sciences, vol. 76, no. 325, pp. 1-16, 2017, doi:10.1007/s12665-017-6607-8.

S. Jae Young and L. Sang Il, "Spatio-temporal groundwater drought monitoring using multi-satellite data based on an artificial neural network," Water, vol. 11, no. 9, pp. 1953-1972, 2019, doi:10.3390/w11091953.

J. Sulaiman and S. H. Wahab, "Heavy rainfall forecasting model using artificial neural network for flood prone area.," Soft Computing and Intelligent System Research Group, vol. 449, pp. 68-76, 2018, doi:10.1007/978-981-10-6451-7_9.

E. Selim Koksal, B. Cemek, S. Cetin, P. H. Gowda and T. A. Howell, "Estimating missing hourly climatic data using artificial neural network for energy balance based ET mapping applications," Meteorological Applications, vol. 24, no. 3, pp. 457-465, 2017, doi:10.1002/met.1644.

L. Gun, K. Dongkyun, K. Hyun-Han and C. Eunsoo, "Estimation of maximum daily fresh snow accumulation using an artificial neural network model," Advances in Meteorology, vol. 2019, no. 2709351, pp. 1-11, 2019, doi:10.1155/2019/2709351.

W. Laqui, R. Zubieta, P. Rau, A. Mejía, W. Lavado and E. Ingol, "Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands?," Modeling Earth Systems and Environment, vol. 5, p. 1911–1924, 2019, doi:10.1007/s40808-019-00647-2.

Y. Z. Kaya, M. Zelenakova, F. Üneş, M. Demirci and H. Hlavata, "Estimation of daily evapotranspiration in Košice City (Slovakia) using several soft computing techniques," Theoretical and Applied Climatology, vol. 144, no. 1-2, pp. 287-298, 2021, doi:10.1007/s00704-021-03525-z.

R. Muhammad Adnan, S. Heddam, Z. Mundher Yaseen, S. Shahid, O. Kisi and B. Li, "Prediction of potential evapotranspiration using temperature-based heuristic approaches," Sustainability, vol. 13, no. 1, pp. 297-318, 2021, doi:10.3390/su13010297.

K. I. Muhammad Mohd, S. Shamsuddin, I. Tarmizi, H. Sobri and O. Kisi, "The development of evolutionary computing model for simulating reference evapotranspiration over Peninsular Malaysia," Theoretical and Applied Climatology, vol. 144, no. 3-4, pp. 1419-1434, 2021, doi:10.1007/s00704-021-03606-z.

M. Vaghefi, K. Mahmoodi, S. Setayeshi and M. Akbari, "Application of artificial neural networks to predict flow velocity in a 180° sharp bend with and without a spur dike," Soft Computing, vol. 24, no. 12, pp. 8805-8821, 2019, doi:10.1007/s00500-019-04413-5.

A. A. Masrur Ahmed, R. C. Deo, N. Raj, A. Ghahramani, Q. Feng, Z. Yin and L. Yang, "Deep learning forecasts of soil moisture: Convolutional neural network and gated recurrent unit models coupled with satellite-derived MODIS, observations and synoptic-scale climate index data," Remote Sensing, vol. 13, no. 4, pp. 554-584, 2021, doi:10.3390/rs13040554.

V. Nourani, G. Elkiran and J. Abdullahi, "Multi-station artificial intelligence based ensemble modeling of reference evapotranspiration using pan evaporation measurements," Journal of Hydrology, vol. 557, pp. 1-20, 2019, doi: 10.1016/j.jhydrol.2019.123958.

A. Girma Berhe, H. Birtukan Abebe, G. Belay Manjur, S. Cholho and L. Woo-Kyun, "Integrating satellite rainfall estimates with hydrological water balance model: Rainfall-runoff modeling in Awash river basin, Ethiopia," Water, vol. 13, no. 6, pp. 800-819, 2021, doi:10.3390/w13060800.

K. Manish, K. Anuradha, D. Prakash Kushwaha, K. Pravendra, M. Anurag, A. Rawshan and A. Kuriqi, "Estimation of daily stage–discharge relationship by using data-driven techniques of a perennial river, India," Sustainability, vol. 12, no. 19, 2020, doi:10.3390/su12197877.

A. Hassan, F. Aitazaz, A. Farhat, A. Bishnu and E. Travis, "Groundwater estimation from major physical hydrology components using artificial neural networks and Deep Learning," Water, vol. 12, no. 1, pp. 5-23, 2020, doi:10.3390/w12010005.

W. E. Béjar, K. Y. Valeriano, J. C. Ilachoque and J. Sulla, "Predicción de caudales medios diarios en la cuenca del Amazonas aplicando redes neuronales artificiales y el modelo neurodifuso ANFIS," Research in Computing Science, vol. 113, no. 2016, pp. 23-35, 2016, doi:10.13053/rcs-113-1-2.

R. Tabbussum and A. Qayoom Dar, "Comparison of fuzzy inference algorithms for stream flow prediction," Neural Computing and Applications, vol. 33, pp. 1643-1653, 2020, doi:10.1007/s00521-020-05098-w.

A. Fernández López, D. Marín Sánchez, G. García Mateos, A. Ruiz Canales, M. Villena García and J. M. Molina Martínez, "A machine learning method to estimate reference evapotranspiration using soil moisture sensors," Applied Sciences, vol. 10, no. 6, pp. 1912-1928, 2020, doi:10.3390/app10061912.

A. Rashid Niaghi and X. Jia, "New approach to improve the soil water balance method for evapotranspiration estimation," Water, vol. 11, no. 12, pp. 2478-2493, 2019, doi:10.3390/ w11122478.

D. Kumar Roy, R. Barzegar, J. Quilty and J. Adamowski, "Using ensembles of adaptive neuro-fuzzy inference system and optimization algorithms to predict reference evapotranspiration in subtropical climatic zones," Journal of Hydrology, vol. 591, pp. 1-18, 2020, doi:10.1016/j.jhydrol.2020.125509.

J. P. Omolbani Mohammadrezapour and K. Ozgur, "Comparison of SVM, ANFIS and GEP in modeling monthly potential evapotranspiration in an arid region (Case study: Sistan and Baluchestan Province, Iran)," Water Science and Technology: Water Supply, vol. 19, no. 2, pp. 392-403, 2019, doi:10.2166/ws.2018.084.

M. R. Hassanvand, H. Karami and S.-F. Mousavi, "Investigation of neural network and fuzzy inference neural network and their optimization using meta-algorithms in river flood routing," Natural Hazards, vol. 94, no. 3, pp. 1057-1080, 2018, doi:10.1007/s11069-018-3456-z.

J. Noymanee and T. Theeramunkong, "Flood forecasting with machine learning technique on hydrological modeling," Procedia Computer Science, vol. 156, pp. 377-386, 2019, doi: 10.1016/j.procs.2019.08.214.

G. Nearing, F. Kratzert, C. Pelissier, D. Klotz, J. Frame and H. Gupta, "Machine learning is central to the future of hydrological modeling," EGU General Assembly, 2020, doi:10.5194/egusphere-egu2020-6111.

Y. Chih Chieh and L. Wen Cheng, "Prediction and modelling of rainfall–runoff during typhoon events using a physically-based and artificial neural network hybrid model," Hydrological Sciences Journal, vol. 60, no. 12, pp. 2102-2116, 2015, doi:10.1080/02626667.2014.959446.

C. Rodríguez, H. Díaz, J. Ballesteros, M. Rohrer and M. Stoffel, "The anomalous 2017 coastal el niño event in Peru," Climate Dynamics, vol. 52, no. 9-10, p. 5605–5622, 2019, doi:10.1007/s00382-018-4466-y.

C. A. Montesinos Cáceres, Modelamiento hidrológico mensual distribuido para el monitoreo de sequías hidrológicas en la vertiente hidrográfica del Atlántico, Lima: Servicio Nacional De Meteorología E Hidrología Del Perú-Senamhi, 2019.

G. Blöschl, M. F. Bierkens, A. Chambel, C. Cudennec, G. Destouni, A. Fiori, J. W. Kirchner, J. J. McDonnell, H. H. G. Savenije, M. Sivapalan, C. Stumpp, E. Toth, E. Volpi and G. Carr, "Twenty-three unsolved problems in hydrology (UPH) – a community perspective," Hydrological Sciences Journal, vol. 64, no. 10, p. 1141–1158, 2019, doi:10.1080/02626667.2019.1620507.

G. Barrientos, A. Herrero, A. Iroumé, O. Mardones and R. J. Batalla, "Modelling the efects of changes in forest cover and climate on hidrology of headwater catchments in south-central Chile," Water, vol. 12, no. 6, pp. 1828-1850, 2020, doi:10.3390/w12061828.

J. J. Cabrera Balarezo, L. Timbe and P. Crespo, "Evaluation of the HEC-HMS model for the hydrological simulation of a paramo basin," Dyna, vol. 86, no. 210, pp. 338-344, 2019, doi:10.15446/dyna.v86n210.70738.

H. Fang and Z. Fan, "Impacts of climate and land use changes on water and sediment yields for the black soil region, northeastern China," Environment, Development and Sustainability, vol. 23, p. 6259–6278, 2020, doi:10.1007/s10668-020-00871-2.

J. F. Farfán, K. Palacios, J. Ulloa and A. Avilés, "A hybrid neural network-based technique to improve the flow forecasting of physical and data-driven models: Methodology and case studies in Andean watersheds," Journal of Hydrology: Regional Studies, vol. 27, 2020, doi:10.1016/j.ejrh.2019.100652.

F. Kratzert, D. Klotz, G. Shalev, G. Klambauer, S. Hochreiter and G. Nearing, "Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets," Hydrology and Earth System Sciences, vol. 23, no. 12, pp. 5089-5110, 2019, doi:10.5194/hess-23-5089-2019.

A. Mosavi, P. Ozturk and K.-w. Chau, "Flood prediction using machine learning models: Literature review," Water, vol. 10, no. 11, pp. 1536-1576, 2018, doi:10.3390/w10111536.

I. Orozco, F. Francés and J. Mora, "Parsimonious modeling of snow accumulation and snowmelt processes in high mountain basins," Water, vol. 11, no. 6, pp. 1288-1307, 2019, doi:10.3390/w11061288.

A. Madueño, M. López, J. Estévez and J. V. Giráldez, "Validación de datos hidrológicos con redes neuronales artificiales. Aplicación a niveles en ríos," II Simposio Nacional de Ingeniería Hortícola: Automatización y TICS en agricultura, 2016.

S. Dazzi, R. Vacondio and P. Mignosa, "Flood stage forecasting using machine-learning methods: A case study on the Parma river (Italy)," Water, vol. 13, no. 12, pp. 1612-1634, 2021, doi:10.3390/w13121612.

Descargas

Publicado

2022-01-01

Cómo citar

Rafael Miñope, W. F., Vilcherres Lizárraga, P. V. R., Muñoz Pérez, S. P., Tuesta Monteza, V. A., & Mejía Cabrera, H. I. (2022). Modelamiento de procesos hidrológicos aplicando técnicas de inteligencia artificial: una revisión sistemática de la literatura. ITECKNE, 19(1), 46–60. https://doi.org/10.15332/iteckne.v19i1.2645

Número

Sección

Artículos de Investigación e Innovación