Predicción de las Resistencias a la Compresión del Concreto con Agregado Fino Parcial de Plástico Utilizando Redes Neuronales Artificiales y Revisiones
DOI:
https://doi.org/10.15332/iteckne.v19i1.2548Palabras clave:
Plástico, agregados finos, resistencia a la compresión, red neuronal artificialResumen
En los últimos años, los desechos plásticos han sido una amenaza para el medio ambiente. La utilización de desechos plásticos como sustitución de agregados finos podría reducir la demanda y los impactos negativos de la extracción de arena al tiempo que aborda los desafíos de los desechos plásticos.
Este estudio tiene como objetivo evaluar modelos de predicción de resistencias a la compresión para concreto con plástico, principalmente plástico reciclado, como reemplazo parcial o adición de agregados finos, mediante el uso de redes neuronales artificiales (ANN), desarrollado en OCTAVE 5.2.0 y conjuntos de datos de revisiones. Se utilizaron 44 conjuntos de datos de 8 fuentes diferentes, que incluían cuatro variables de entrada, a saber: - relación agua: aglutinante; controlar la resistencia a la compresión (MPa); % de reemplazo o aditivo de plástico por peso y tipo de plástico; y la variable de salida fue la resistencia a la compresión del hormigón con agregados plásticos parciales.
Se ejecutaron varios modelos y el modelo seleccionado, con 14 nodos en la capa oculta y 320.000 iteraciones, indicó el error cuadrático medio general (RMSE), el factor de varianza absoluto (R2), el error absoluto medio (MAE) y el error porcentual absoluto medio (MAPE). ) valores de 1,786 MPa, 0,997, 1,329 MPa y 4,44%. Tanto los valores experimentales como los predichos mostraron un% de reducción generalmente creciente de las resistencias a la compresión con el aumento del% de agregado fino plástico.
El modelo mostró errores razonablemente bajos, precisión razonable y buena generalización. El modelo ANN podría utilizarse ampliamente en el modelado de hormigón verde, con áridos finos de plástico de desecho parcial. El estudio recomienda la aplicación de modelos ANNs como posible alternativa para el diseño de mezclas de prueba de concreto verde. Deben fomentarse las técnicas sostenibles, como los superplastificantes de bajo costo a partir de material reciclado y las tecnologías rentables para dimensionar y dar forma adecuada al plástico para la aplicación de agregados finos, a fin de mejorar la resistencia del hormigón con agregados plásticos parciales.
Descargas
Citas
European Environmental Agency, “Resource efficiency and waste: The Plastic waste trade in the circular economy, Briefing no. 7/2019,” Publications office of the EU, October 2019.[online]. Available: doi: 10.2800/220248 (Accessed March, 19th 2021)
V Chandwani, V Agrawal, R Nagar, and S Singh, “Modeling slump of ready mix concrete using artificial neural network,” International journal of technology, Vol. 6 (2), pp. 207–216, 2015. DOI: http://dx.doi.org/10.14716/ijtech.v6i2.213
P Chopra, RK Sharma, and M Kumar, “Prediction of compressive strength of concrete using artificial neural network and genetic programming,” Advances in material science and engineering, Vol. 2016, 7648467, 2016. https://doi.org/10.1155/2016/7648467
AM Al-Swaidani, and WT Khwies, “Applicability of artificial neural networks to predict mechanical and permeability properties of volcanic scoria-based concrete,” Advances in civil engineering, 2018, 5207962, 2018. https://doi.org/10.1155/2018/5207962
J Revathy, P Gajalakshmi, and G Ashwini, “Neural network for the prediction of fresh properties and compressive strength of flowable concrete,” Journal of Urban and environmental engineering, Vol. 13 (1), pp. 183–197, 2019. doi:10.4090/juee.2019.v13n1.183197
D Sathyan, KB Anand, AJ Prakash, and B Premjith, “Modeling the fresh and hardened stage properties of self-compacting concrete using random kitchen sink algorithm,” International journal of concrete structures and materials, 2018. DOI: 10.1186/s40069-018-0246-7
BRK Chunchu, and J Putta, “Effect of recycled plastic granules as a partial substitute for natural resource sand on the durability of SCC,” Resources. 2019, 8, 133. DOI: 10.3390/resources8030133
AO Soboji, and HI Owamah, “Evaluation of the suitability of low-density polyethylene (LDPE) waste as fine aggregate in concrete,” Nigerian journal of technology (NIJOTECH), Vol. 33 (4), pp 409-425, 2014. http://dx.doi.org/10.4314/njt.v33i4.1
R Dharmaraj, and G Iyappan, “Suitability of partial replacement of pulverized plastic as fine aggregate in cement concrete,” Indian journal of science and technology, Vol. 9 (23), 2016. DOI: 10.17485/ijst/2016/v9i23/95856
CN Ngandu, (2021) “Prediction of Compressive Strengths for Rice Husks Ash incorporated concrete, Using Neural Network and Reviews,” ITECKNE, Vol. 18 (1). DOI: 10.15332/iteckne.v18i1.2532 (Accepted for publication)
B Jabłońska, P Kiełbasa, M Korenko, and T Dróżdż, “Physical and chemical properties of waste from PET bottles washing as a component of solid fuels,” Energies. 2019, 12, 2197. https://doi.org/10.3390/en12112197
N Saikia, and J Brito, Waste polyethylene terephthalate as an aggregate in concrete. Material research, 16 (2), pp 341–350, 2013. https://doi.org/10.1590/S1516-14392013005000017
TW Adejumo, and S Jibrin, “Strength Characteristics of concrete with plastic granules as partial replacement for sand,” in Federal university of Technology, Minna [online document], 2020. Available: https://staff.futminna.edu.ng/CIE/content/journal/PF1258/20.pdf (Accessed March 15th, 2021)
J Thorneycroft, P Savoikar, J Orr, and R Ball, (2016). “Performance of concrete with recycled plastic as a partial replacement for sand,” In: R.Jone (ed.). CTU Congress. Dundee, 2016. https://researchportal.bath.ac.uk/en/publications/performance-of-concrete-with-recycled-plastic-as-a-partial-replacement-for-sand(2c25def5-34a1-4d85-9f9b-705fbe2d2f86).html
H Bolat, and P Erkus, “Use of polyvinyl chloride (PVC) powder and granules as aggregate replacement in concrete mixtures,” Sci Eng Compos Mater. 23 (2) pp. 209–216, 2016. DOI: 10.1515_secm-2014-0094
KS Gopi, T Srinivas, SP Raju, “Feasibility study of recycled plastic waste as fine aggregate in concrete,” In: 2nd international conference on design and manufacturing aspects of sustainable energy (ICMED, 2020) E3S web of conferences. Hyderabad, India, 10-12 July, 2020, 184, 01084 (2020). Available at: https://doi.org/10.1051/e3sconf/202018401084
B Rai, TS Rushad, Kr. Bharesh, and SK Duggal, “Study of waste plastic mix concrete with plasticizer,” International Scholarly Research Network (ISRN) Civil Engineering. Vol. 2012, 469272, 2012. DOI:10.5402/2012/469272
SDA Shubbar, and AS Al-Shadeedi, “Utilization of waste plastic bottles as fine aggregate in concrete,” Kufa Journal of Engineering, Vol. 8 (2), pp. 132–146, June 2017. http://journals.uokufa.edu.iq/index.php/kje/article/view/6068/5321
AI Al-Hadithi, and FA Alani, “Mechanical properties of high performance concrete containing waste plastic as aggregate,” Journal of Engineering (Baghdad, online) – Baghdad University. Vol. 21 (8), pp. 100-115, 2015. https://joe.uobaghdad.edu.iq/index.php/main/article/view/377/328
HH Hamid, AE Osama, and KA Mahmoud, “Mechanical, thermal and acoustical properties of concrete with fine polyvinyl chloride (PVC),” Iraq Journal of Civil Engineering, Vol. 11 (2), pp. 81–91, 2017. https://iasj.net/iasj/download/57ee0b200ca5a4b7
NS Mohammed, BA Hamza, NH Al-Shareef, HH Hussein, “Structural behavior of reinforced concrete slabs containing fine waste aggregates of polyvinyl chloride,” Buildings. 2021, 11, 26. https://doi.org/10.3390/buildings11010026 https://www.mdpi.com/2075-5309/11/1/26/htm
S Burman, P Meena, M Farhan, and P Meena, “Development of low-cost concrete using waste plastics as sand replacement,” Dogo Rangsang Research Journal. Vol. 10 (7) (5), 2020. pp. 167–171.
N Morova, and S Terzi, “Evaluation of colemanite waste as aggregate hot mix asphalt concrete.” Journal of natural and applied science ,19 (2), pp. 8–15, 2015.
A Hasanzade-Inallu, PH Inallou, and B Eskandarinezhad, “Prediction of compressive strength of concrete with manufactured sand using neural networks and bat algorithm,” Soil structure interaction journal, Vol. 4, pp. 52–63, 2019.
J Zhang, Y Zhao, and H Li, “Experimental Investigation and Prediction of Compressive Strength of Ultra-High Performance Concrete Containing Supplementary Cementitious Materials,” Advances in Material Science and Engineering, Vol. 2017, 4563164, 2017. https://doi.org/10.1155/2017/4563164
V Chandwani, V Agrawal, and R Nagar, “Modeling slump of ready mix concrete using genetically evolved artificial neural network,” Advance artificial neural systems. Vol. 2014, 629137, 2014. http://dx.doi.org/10.1155/2014/629137
K Tuntisukrarom, and R Cheerarot, “Prediction of compressive strength behavior of ground bottom ash concrete by an artificial neural network,” Advances in materials science and engineering, Vol. 2020, 2608231, 2020. https://doi.org/10.1155/2020/2608231
A Henigal, E Elbeltgai, M Eldwiny, M Serry, “Artificial neural network model for forecasting concrete compressive strength and slump in Egypt,” Journal of Al Azhar university engineering sector, Vol. 11 (39), April 2016.
JW Eaton, D Bateman, S Hauberg, and R Wehbring, GNU Octave version 5.2.0 manual: A High-level interactive language for numerical computations, 2019 [online]. Available at: https.//www.gnu.org/software/octave/doc/v.5.2.0 (Accessed in 2020/2021)
SA Oman, Simple Neural Network in Octave-Part 2. January 3, 2016. [online]. Available at: https://aimatters.wordpress.com/2016/01/03/a-simple-neural-network-in-octave-part-2/. (Accessed: March 2021, 14th January, 2021)
GeeksforGeeks, Activation Functions in Neural Networks- Last updated 8th October, 2020. [online]. Available at: https://www.geeksforgeeks.org/activation-functions-neural-networks/. (last accessed May 11th, 2021).
Gupta, Fundamentals of Deep Learning-Activation Functions and When to Use Them? 2017-updated 2020 [online]. Available at: https://www.analyticsvidhya.com/blog/2020/01/fundamentals-deep-learning-activation-functions-when-to-use-them/. (accessed 18th January 2021)
L Baumbach, Neural network-activation function, Morioh.com. [Online]. Available at: https://morioh.com/p/21b55ba475f9 (accessed May 11th, 2021).
C Campos, CJ Silva, and DFM Torres, “Numerical optimal control of HIV transmission in octave/MATLAB,” Mathematical and computational applications, 25, 1: doi:10.3390/mca25010001
J Żurek, J Małachowski, J Ziółkowski, and J Szkutnik-RogoŻ, “Reliability analysis of technical means of transport,” Applied sciences. 10,3016; doi:10.3390/app10093016
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
La revista ITECKNE se encuentra registrada bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional Por lo tanto, esta obra se puede reproducir, distribuir y comunicar públicamente, siempre que se reconozca el nombre de los autores y a la Universidad Santo Tomás. Se permite citar, adaptar, transformar, autoarchivar, republicar y crear a partir del material, siempre que se reconozca adecuadamente la autoría, se proporcione un enlace a la obra original y se indique si se han realizado cambios.
La Revista ITECKNE no retiene los derechos sobre las obras publicadas y los contenidos son responsabilidad exclusiva de los autores, quienes conservan sus derechos morales, intelectuales, de privacidad y publicidad. Sin embargo esta facultada para editar, publicar, reproducir y distribuir tanto en medios impresos como digitales, además de incluir el artículo en índices internacionales y/o bases de datos, de igual manera, se faculta a la editorial para utilizar las imágenes, tablas y/o cualquier material gráfico presentado en el artículo para el diseño de carátulas o posters de la misma revista.