Autenticación multifactor con el uso de un sensor kinect
DOI:
https://doi.org/10.15332/iteckne.v13i1.1379Palabras clave:
Autenticación, Kinect, multifactorResumen
En este trabajo se desarrolló un sistema de autenticación multifactor empleando el sensor Kinect y equipo de cómputo. Se utilizó programación en lenguaje C# con el ambiente de desarrollo y las herramientas que provee el fabricante para el sistema operativo Windows. Se eligió una combinación de métodos de autenticación con el fin de reducir la capacidad que tiene un usuario no autorizado de ser elegible para tener acceso a un determinado sistema o lugar. Se seleccionaron cinco métodos para conseguir la autenticación multifactor, cubriendo las tres categorías de métodos de autenticación: Llaves de información, Llaves físicas y Llaves biométricas, basadas respectivamente en algo que la persona sabe, algo que la persona posee y algo que la persona es. Se consiguió un sistema de autenticación confiable, robusto y sencillo de usar, privilegiando la confiabilidad y disminuyendo la complejidad de cada uno de los métodos individuales. Se demostró que es posible desarrollar un sistema de autenticación multifactor con un sensor Kinect.
Descargas
Citas
E. A. Fisch and G. B. White, Secure computers and networks. Analysis, design and implementation. CRC Press, 1999, pp. 1-4, 53-67.
M. Burnett, Perfect passwords: Selection, protection, authentication, Rockland: Syngress Publishing, 2006, pp. 76, 131, 133, 134.
J. Killmeyer, Information security architecture. An integrated approach to security in the organization, Auerbach: CRC Press, 2006, pp. 101, 114-116.
D. Catuhe, Programming with the Kinect for Windows Software Development Kit. Redmond, Washington: Pearson Education, 2012, pp. 3-5, 27, 32.
J. Abhijit, Kinect for Windows SDK Programming Guide, Mumbai: Packt Publishing, 2012, pp. 7-18, 19, 21, 37-39, 47-53.
J. Přinosil, K. Říha, and F. Dongmei, “Kinect Based Automated Access Control Systems,” Department of Telecommunications, Brno University of Technology. Department of Automation, University of Science and Technology, Beijing Latest Trends in Information Technology. Nov. 2012.
S. McSheehy, and E. Cowley, Home Security Prototype Device, University of Massachusetts Lowell. May. 2012.
M. Martínez-Zarzuela, F.J. Díaz-Pernas, A. Tejero de Pablos, F. Perozo-Rondón, M. Antón-Rodríguez, and D. González-Ortega, “Monitorización del cuerpo humano en 3D mediante tecnología Kinect,” SAAEI, 747-752. 2011.
M. Afizi, M. Shukran, M. Suhaili, and B. Ariffin, “Kinect-based Gesture Password Recognition,” Faculty of Science and Defence Technology, Universiti Pertahanan Nasional Malaysia, Australian Journal of Basic and Applied Sciences, vol. 6 no. 8, pp. 492-499, 2012.
L. Li, “Gesture-based User Authentication with Kinect,” Boston University, Department of Electrical and Computer Engineering, Technical Report No. ECE-2013-2. April 7, 2013.
J. Wu, K. Janus, and I. Prakash, “The Value of Multiple Viewpoints in Gesture-Based User Authentication,” in Computer Vision and Pattern Recognition Workshops (CVPRW), 2014 IEEE Conference on. IEEE, 2014.
S. J. Fluckiger, Security with Visual Understanding: Kinect Human Recognition Capabilities Applied in a Home Security System, The University of Texas at Austin. May. 2012.
Araujo, M. Ricardo, G. Graña, and V. Andersson, “Towards skeleton biometric identification using the microsoft kinect sensor,” Proceedings of the 28th Annual ACM Symposium on Applied Computing. ACM, 2013.
J. Wu, K. Janus, and I. Prakash, “Dynamic time warping for gesture-based user identification and authentication with Kinect,” Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on. IEEE, 2013.
B. Dikovski, G. Madjarov, and D. Gjorgjevikj, “Evaluation of different feature sets for gait recognition using skeletal data from Kinect,” Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2014 37th International Convention on. IEEE, 2014.
E. Hayashi, M. Maas, and J. I. Hong, “Wave to me: user identification using body lengths and natural gestures,” Proceedings of the 32nd annual ACM Conference on Human Factors in Computing Systems. ACM, 2014.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
La revista ITECKNE se encuentra registrada bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional Por lo tanto, esta obra se puede reproducir, distribuir y comunicar públicamente, siempre que se reconozca el nombre de los autores y a la Universidad Santo Tomás. Se permite citar, adaptar, transformar, autoarchivar, republicar y crear a partir del material, siempre que se reconozca adecuadamente la autoría, se proporcione un enlace a la obra original y se indique si se han realizado cambios.
La Revista ITECKNE no retiene los derechos sobre las obras publicadas y los contenidos son responsabilidad exclusiva de los autores, quienes conservan sus derechos morales, intelectuales, de privacidad y publicidad. Sin embargo esta facultada para editar, publicar, reproducir y distribuir tanto en medios impresos como digitales, además de incluir el artículo en índices internacionales y/o bases de datos, de igual manera, se faculta a la editorial para utilizar las imágenes, tablas y/o cualquier material gráfico presentado en el artículo para el diseño de carátulas o posters de la misma revista.