FPGA implementation of 16QAM modem for cognitive satellites

Authors

  • Evelio Astaiza Hoyos Universidad del Quindío
  • Héctor Fabio Bermúdez Orozco Universidad del Quindío

DOI:

https://doi.org/10.15332/iteckne.v9i1.2749

Keywords:

Software defined radio, qAM, Reconfigurable transponders, CORDIC, FPGAs, DSPs, Satellites

Abstract

This paper presents the implementation algorithms for quadrature modulator and demodulator 16 qAM as SDR functions on programmable logic devices, particularly for FPGA platforms. It presents all the model analysis, design and implementation of it, and considering the results of implantation of the device as a component of a cognitive satellite transponder. The validation process of the implementation was done through the design tools, simulation, synthesis, and downloads on Xilinx Spartan 3E FPGA.

Downloads

Download data is not yet available.

Author Biographies

Evelio Astaiza Hoyos, Universidad del Quindío

PhD(c) Procesado de señales y las comunicaciones, Universidad de Vigo-España. M.Sc. Ingeniería, área de telecomunicaciones, Universidad del Cauca. Profesor Asistente- Universidad del Quindío, Grupo GITUQ

Héctor Fabio Bermúdez Orozco, Universidad del Quindío

PhD(c) Procesado de señales y las comunicaciones, Universidad de Vigo-España. M.Sc. Electrónica y Telecomunicaciones, Universidad del Cauca, Profesor Asistente - Universidad del Quindío Grupo GITUQ

References

[1] Paillassa, B.; Morlet, C. “Flexible satellites: software radio in the sky”. 10th International Conference on Telecommunications. ICT 2003. Volume 2, 23 Feb - 1 March 2003 Pp:1596 -- 1600

[2] Morlet, C.; Boucheret, M.-L.; Calmettes, V.; Paillassa, B.; Perennou, T. “Towards Generic Satellite Payloads: Software Radio”. .Parallel and Distributed Processing International Symposium, 2003. Proceedings. 22-26 April 2003 P 7

[3] Medina P, Samir; Astaiza H, Evelio and Vera V, Pedro. “Reconfigurable Satellite Payload Model based on Software Radio Technologies”. Presented to the Third IEEE International Congress of the Andean Region -- Andescon2006.

[4] Tan L. K., and H. Samueli, “A 200 MHz Quadrature Digital Synthesizer/Mixer in 0.8 μm CMOS,” IEEE Solid State Circuits, Vol. 30,No. 3, pp. 193-200, Mar. 1995.

[5] Haykin, Simon. “Cognitive Radio: Brain-Empowered Wireless Communications”. IEEE Journal on Selected Areas in Communications, Vol. 23, No 2. February 2005.

[6] Harada, H. y Prasad, R. (2002) Simulation and Software Radio for Mobile Communications. Artech House Publishers. Nueva York. 467p.

[7] J. Mitola, “Cognitive radio for flexible mobile multimedia communications,” in Proc. IEEE Int. Workshop Mobile Multimedia Communications, pp. 3–10, 1999.

[8] Haiyun Tang, “Some Physical Layer Issues of WideBand Cognitive Radio Systems”, First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005. 8-11 Nov. pp. 151 – 159.

[9] L. Le and E. Hossain, “Resource allocation for spectrum underlay in cognitive radio networks,” IEEE Transactions on Wireless Communications, vol. 7, Issue 12, Part 2, December 2008.

[10] J. George, A. Sultan, and M. Nafie, “ Distributed admission and power control for cognitive radios in spectrum underlay networks,” to appear, GLOBECOM proceedings.

[11] D. I. Kim, L. Le, and E. Hossain, “Joint rate and power allocation for cognitive radios in dynamic spectrum access environment,” IEEE Transactions on Wireless Communications, vol. 7, Issue 12, Part 2, December 2008.

[12] P. Maille and B. Tuffin. “Optimization of transmission power in competitive wireless networks”. Lecture notes in computer science., May 2009.

[13] W. Yu, W. Rhee, S. Boyd, and J. Cioffi. “Iterative waterfilling for Gaussian vector multiple-access channels”. IEEE Transactions on Information Theory, 50(1):145– 152, Jan. 2004.

[14] Rodríguez, Virgilio, “An Analytical Foundation for Resource Management in Wireless Communications”. IEEE Global Telecommunications Conference, San Francisco, CA, 1-5 December 2003.

[15] Heeyoung Lee, Seongkwan Kim, Okhwan Lee, Sunghyun Choi, Sung-Ju Lee, “Available BandwidthBased Association in IEEE 802.11 Wireless LANs”. MSWiM ‘08 Proceedings of the 11th international symposium on Modeling, analysis and simulation of wireless and mobile systems, ACM New York, NY, USA ©2008: 132-139, 2008.

[16] Li-Hsing Yen; Jia-Jun Li; Che-Ming Lin. “Stability and Fairness of Native AP Selection Games in IEEE 802.11 Access Networks”. Seventh International Conference on Wireless and Optical Communications Networks (WOCN) 20 Pp. 1 – 5, 2010.

[17] Bonald, T.; Ibrahim, A.; Roberts, J. “The Impact of Association on the Capacity of WLANs”. 7th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, 2009. WiOPT 2009. Pp. 1 – 10.

[18] Ghini, V.; Ferretti, S.; Panzieri, F. “A strategy for best access point selection”. Wireless Days (WD), 2010 IFIP, pp. 1 – 5.

[19] I-Ping Hsieh, Fu-Min Chang, and Shang-Juh Kao. “Adaptive Access Points Selection for 802.11 Wireless Networks”. Proceeding AsiaCSN ‘07 Proceedings of the Fourth IASTED Asian Conference on Communication Systems and Networks. pp. 218-222. 2007.

[20] S. Vasudevan, K. Papagiannaki, C. Diot, J. Kurose and D. Towsley. “Facilitating Access Point Selection in IEEE 802.11 Wireless Networks”. IMC ‘05 Proceedings of the 5th ACM SIGCOMM conference on Internet Measurement. pp. 26-27.

Published

2014-11-26

How to Cite

Astaiza Hoyos, E., & Bermúdez Orozco, H. F. (2014). FPGA implementation of 16QAM modem for cognitive satellites. ITECKNE, 9(1), 83–89. https://doi.org/10.15332/iteckne.v9i1.2749

Issue

Section

Research and Innovation Articles