Plastic versus Glass: a view of the life cycle of the two controversial materials

Authors

DOI:

https://doi.org/10.15332/iteckne.v20i2.3007

Keywords:

Circular Economy, Glass, Laws, Plastic, Policies, Polymer, Waste

Abstract

Since the last few years, the practices of reuse and repair products to extend their useful life and reduce waste generation gained interaction. As well as strongly promoting recycling, maximizing the materials industrialization to convert waste into new resources. Therefore, two controversial materials are currently discussed (Glass and Plastic). In 2020, 385 million tons of Plastic were produced globally, compared to 143 million tons of Glass. In 2020, the per capita consumption of Glass was 32 kg yearly, compared to Plastic at 105 kg yearly. However, the manuscript aims to discuss the use of Plastic versus Glass to learn about each material, its benefits, and disadvantages to make a perspective criticism. The methodology is investigative collecting from investigation articles statistics from 2017 to 2022. The results show that the choice between Glass or Plastic depends on very particular factors, such as the specific application in which it is required and the manufacturer's or end user's preferences.

Moreover, it is important to highlight that, compared to Plastics, Glass has fewer negative impacts on climate change since it has a lower carbon footprint. However, a comprehensive approach is required to minimize the Glass effects on climate change due to its high energy consumption, including efficient production practices. It is recommended that each country define market statistics for the recovery, recycling, and industrialization of Glass, Plastic, and other items such as cardboard, paper, and aluminum cans to promote waste recovery and prevent surrounding pollution globally.

Downloads

Download data is not yet available.

Author Biography

Sebastián Naranjo Silva, Polytechnic University of Catalonia

Polytechnic University of Catalonia, Barcelona, Spain

References

[1] D. Burneo, J. M. Cansino, and R. Yñiguez, “Environmental and Socioeconomic Impacts of Urban Waste Recycling as Part of Circular Economy. The Case of Cuenca (Ecuador),” Sustainability, vol. 12, no. 8, p. 3406, Apr. 2020, doi: 10.3390/su12083406.

[2] MPCEIP and GIZ, Libro Blanco de Economía Circular de Ecuador. Quito - Ecuador, 2021. Accessed: Jul. 03, 2022. [Online]. Available: https://www.produccion.gob.ec/wp-content/uploads/2021/05/Libro-Blanco-final-web_mayo102021.pdf

[3] C. Jacob-Vaillancourt and L. Sorelli, “Characterization of concrete composites with recycled plastic aggregates from postconsumer material streams,” Constr Build Mater, vol. 182, pp. 561–572, Sep. 2018, doi: 10.1016/j.conbuildmat.2018.06.083.

[4] Glass Packaging Institute, “Glass Container Recycling Loop,” Glass Container Recycling Loop, May 2022. https://www.gpi.org/glass-recycling-facts (accessed May 31, 2023).

[5] O. Zapata, “The relationship between climate conditions and consumption of bottled water: A potential link between climate change and plastic pollution,” Ecological Economics, vol. 187, p. 107090, Sep. 2021, doi: 10.1016/j.ecolecon.2021.107090.

[6] J. L. Thomason, “Glass fibre sizing: A review,” Compos Part A Appl Sci Manuf, vol. 127, p. 105619, Dec. 2019, doi: 10.1016/j.compositesa.2019.105619.

[7] D. S. Cousins, Y. Suzuki, R. E. Murray, J. R. Samaniuk, and A. P. Stebner, “Recycling glass fiber thermoplastic composites from wind turbine blades,” J Clean Prod, vol. 209, pp. 1252–1263, Feb. 2019, doi: 10.1016/j.jclepro.2018.10.286.

[8] International Energy Agency, “Market Report Series Renewables 2018 Analysis and Forecast to 2023,” 2018. [Online]. Available: https://www.iea.org/reports/renewables-2018

[9] International Association of Plastic Distribution, “Recycling Performance Plastics: Best Practices,” Recycling Performance Plastics: Best Practices, 2019. https://www.iapd.org/documents/StoreDownloads/Recycling_PP_Best_Practices_UPDATED.pdf (accessed May 31, 2023).

[10] P. Arevalo, K. Quinteros, A. Vivar, and G. Orellana, “Detention of Plastic Microparticles in the Drinking Water Treatment System Tomebamba in Cuenca and Mahuarcay in the City of Azogues, Ecuador,” in Journal of Survey in Fisheries Sciences, 2023, pp. 1–26. doi: https://doi.org/10.17762/sfs.v10i3S.652.

[11] G. Kaur et al., “Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: State-of-the-art review and future challenges,” Materials Science and Engineering: C, vol. 104, p. 109895, Nov. 2019, doi: 10.1016/j.msec.2019.109895.

[12] K. Afshinnia and P. R. Rangaraju, “Influence of fineness of ground recycled glass on mitigation of alkali–silica reaction in mortars,” Constr Build Mater, vol. 81, pp. 257–267, Apr. 2015, doi: 10.1016/j.conbuildmat.2015.02.041.

[13] L. Zhu, D. Luo, and Y. Liu, “Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration,” Int J Oral Sci, vol. 12, no. 1, p. 6, Dec. 2020, doi: 10.1038/s41368-020-0073-y.

[14] W. Ferdous et al., “Recycling of landfill wastes (tyres, plastics and glass) in construction – A review on global waste generation, performance, application and future opportunities,” Resour Conserv Recycl, vol. 173, p. 105745, Oct. 2021, doi: 10.1016/j.resconrec.2021.105745.

[15] P. Guo, W. Meng, H. Nassif, H. Gou, and Y. Bao, “New perspectives on recycling waste glass in manufacturing concrete for sustainable civil infrastructure,” Constr Build Mater, vol. 257, p. 119579, Oct. 2020, doi: 10.1016/j.conbuildmat.2020.119579.

[16] Y. García-Blanco, H. Ripoll-Sierra, H. Ripoll-Goenaga, J. Roldán-Mckinley, and E. Yime-Rodríguez, “Redes de Petri en la Automatización de una Máquina Tampográfica de Plásticos,” Scientia et Technica, vol. 24, no. 1, pp. 35–45, 2019, Accessed: May 01, 2023. [Online]. Available: https://www.redalyc.org/journal/849/84959429004/html/

[17] D. Barrowclough and C. D. Birkbeck, “Transforming the Global Plastics Economy: The Role of Economic Policies in the Global Governance of Plastic Pollution,” Soc Sci, vol. 11, no. 1, Jan. 2022, doi: 10.3390/socsci11010026.

[18] J. P. Muñoz-Pérez et al., “Galápagos and the plastic problem,” Frontiers in Sustainability, vol. 4, Mar. 2023, doi: 10.3389/frsus.2023.1091516.

[19] V. M. Blanchar-Amaya, E. M. Villalba-Manjarres, S. A. Monsalve-Romero, and O. F. Arbelaez-Perez, “Propiedades mecánicas y térmicas de hormigones modificados con residuos plásticos triturados y pelletizados,” ITECKNE, vol. 19, no. 2, Jun. 2022, doi: 10.15332/iteckne.v19i2.2789.

[20] J. G. Portilla-Jiménez, “Análisis del Marco Normativo de Economía Circular en Ecuador Orientado al Sector de los Plásticos,” FIGEMPA: Investigación y Desarrollo, vol. 13, no. 1, pp. 38–47, Feb. 2022, doi: 10.29166/revfig.v13i1.3364.

[21] British Plastics Federation, “Plastics Applications,” Plastics Applications, May 2022. https://www.bpf.co.uk/plastipedia/applications/about_plastics__packaging.aspx (accessed May 31, 2023).

[22] A. Ali Elamin and S. Osman Khairy Ahmed, “Effect of Glass and Plastic Covers on the Performance of Solar Photovoltaic Cells in the Presence of Mud,” Omdurman Islamic University Journal, vol. 18, no. 1, pp. 30–40, Jan. 2022, doi: 10.52981/oiuj.v18i1.1884.

[23] Aquae Fundation, “Plastic or glass bottles?,” Plastic or glass bottles?, Mar. 01, 2023. https://www.fundacionaquae.org/que-es-mejor-las-botellas-de-plastico-o-las-botellas-de-cristal/ (accessed May 31, 2023).

[24] D. Knoblauch and L. Mederake, “Government policies combatting plastic pollution,” Curr Opin Toxicol, vol. 28, pp. 87–96, Dec. 2021, doi: 10.1016/j.cotox.2021.10.003.

[25] J. Palardy, “Conservation Science Program - Solving the plastic pollution problem,” Oxford, 2020. Accessed: May 05, 2023. [Online]. Available: https://www.pewtrusts.org/en/research-and-analysis/articles/2020/07/23/breaking-the-plastic-wave-top-findings

[26] A. L. Patrício Silva et al., “Rethinking and optimising plastic waste management under COVID-19 pandemic: Policy solutions based on redesign and reduction of single-use plastics and personal protective equipment,” Science of The
Total Environment, vol. 742, p. 140565, Nov. 2020, doi: 10.1016/j.scitotenv.2020.140565.

[27] A. Kumar Rai, G. Singh, and A. Kumar Tiwari, “Comparative study of soil stabilization with glass powder, plastic and e-waste: A review,” Mater Today Proc, vol. 32, pp. 771–776, Jan. 2020, doi: 10.1016/j.matpr.2020.03.570.

[28] R. Xiao et al., “Strength, microstructure, efflorescence behavior and environmental impacts of waste glass geopolymers cured at ambient temperature,” J Clean Prod, vol. 252, p. 119610, Apr. 2020, doi: 10.1016/j.jclepro.2019.119610.

[29] A. Mohammadinia, Y. C. Wong, A. Arulrajah, and S. Horpibulsuk, “Strength evaluation of utilizing recycled plastic waste and recycled crushed glass in concrete footpaths,” Constr Build Mater, vol. 197, pp. 489–496, Feb. 2019, doi: 10.1016/j.conbuildmat.2018.11.192.

[30] W. I. Khalil and N. F. Al Obeidy, “Some properties of green concrete with glass and plastic wastes,” IOP Conf Ser Mater Sci Eng, vol. 737, no. 1, p. 012052, Feb. 2020, doi: 10.1088/1757-899X/737/1/012052.

[31] A. Rahimizadeh, J. Kalman, K. Fayazbakhsh, and L. Lessard, “Recycling of fiberglass wind turbine blades into reinforced filaments for use in Additive Manufacturing,” Compos B Eng, vol. 175, p. 107101, Oct. 2019, doi: 10.1016/j.compositesb.2019.107101.

[32] S. Naranjo Silva, D. J. Punina Guerrero, and J. J. Morales Martinez, “Energía solar en paradas de bus una aplicación moderna y vanguardista,” Revista InGenio, vol. 4, no. 1, pp. 58–68, 2021, doi: 10.18779/ingenio.v4i1.368.

[33] C. N. Ngandu, “Compressive Strengths Prediction for Concrete with Partial Plastic Fine Aggregate using Neural Network and Reviews,” ITECKNE, vol. 19, no. 1, pp. 60–69, 2022, doi: 10.15332/iteckne.

[34] Z. Chen, H. Wang, R. Ji, L. Liu, C. Cheeseman, and X. Wang, “Reuse of mineral wool waste and recycled glass in ceramic foams,” Ceram Int, vol. 45, no. 12, pp. 15057–15064, Aug. 2019, doi: 10.1016/j.ceramint.2019.04.242.

[35] D. Amienyo, H. Gujba, H. Stichnothe, and A. Azapagic, “Life cycle environmental impacts of carbonated soft drinks,” Int J Life Cycle Assess, vol. 18, no. 1, pp. 77–92, Jan. 2013, doi: 10.1007/s11367-012-0459-y.

[36] M. Carsana, M. Frassoni, and L. Bertolini, “Comparison of ground waste glass with other supplementary cementitious materials,” Cem Concr Compos, vol. 45, pp. 39–45, Jan. 2014, doi: 10.1016/j.cemconcomp.2013.09.005.

[37] A. L. Patrício Silva et al., “Rethinking and optimising plastic waste management under COVID-19 pandemic: Policy solutions based on redesign and reduction of single-use plastics and personal protective equipment,” Science of The Total Environment, vol. 742, p. 140565, Nov. 2020, doi: 10.1016/j.scitotenv.2020.140565.

[38] W. W. Y. Lau et al., “Evaluating scenarios toward zero plastic pollution,” Science (1979), vol. 369, no. 6510, pp. 1455–1461, Sep. 2020, doi: 10.1126/science.aba9475.

[39] Environmental Investigation Agency, “Convenio sobre la Contaminación por Plásticos: Hacia un nuevo acuerdo global con un enfoque de gobernanza de múltiples capas que aborde la contaminación por plásticos,” 2020. [Online]. Available: https://eia-international.org/wp-content/uploads/Convention-on-Plastic-Pollution_ES.pdf

[40] J. Zheng and S. Suh, “Strategies to reduce the global carbon footprint of plastics,” Nat Clim Chang, vol. 9, no. 5, pp. 374–378, May 2019, doi: 10.1038/s41558-019-0459-z.

[41] R. Geyer, J. R. Jambeck, and K. L. Law, “Production, use, and fate of all plastics ever made,” Sci Adv, vol. 3, no. 7, Jul. 2017, doi: 10.1126/sciadv.1700782.

[42] J. R. Jambeck et al., “Plastic waste inputs from land into the ocean,” Science (1979), vol. 347, no. 6223, pp. 768–771, Feb. 2015, doi: 10.1126/science.1260352.

[43] A. M. Neto, T. S. Gomes, M. Pertel, L. A. V. P. Vieira, and E. B. A. V. Pacheco, “An overview of plastic straw policies in the Americas,” Mar Pollut Bull, vol. 172, p. 112813, Nov. 2021, doi: 10.1016/j.marpolbul.2021.112813.

[44] N. H. E. Ho and C. Not, “Selective accumulation of plastic debris at the breaking wave area of coastal waters,” Environmental Pollution, vol. 245, pp. 702–710, Feb. 2019, doi: 10.1016/j.envpol.2018.11.041.

[45] A. M. Neto, T. S. Gomes, M. Pertel, L. A. V. P. Vieira, and E. B. A. V. Pacheco, “An overview of plastic straw policies in the Americas,” Mar Pollut Bull, vol. 172, p. 112813, Nov. 2021, doi: 10.1016/j.marpolbul.2021.112813.

[46] S. Karuppannan Gopalraj and T. Kärki, “A review on the recycling of waste carbon fibre/glass fibre-reinforced composites: fibre recovery, properties and life-cycle analysis,” SN Appl Sci, vol. 2, no. 3, p. 433, Mar. 2020, doi: 10.1007/s42452-020-2195-4.

Published

2023-07-11

How to Cite

Naranjo Silva, S. (2023). Plastic versus Glass: a view of the life cycle of the two controversial materials. ITECKNE, 20(2). https://doi.org/10.15332/iteckne.v20i2.3007

Issue

Section

Accepted for Publication