Influence of Particle Size and Temperature on Methane Production From Fique’s Bagasse

Authors

  • Liliana del Pilar Castro Molano Universidad San Buenaventura
  • Carolina Guzmán Luna Universidad Industrial de Santander (UIS)
  • Humberto Escalante Hernández Universidad Industrial de Santander (UIS)

DOI:

https://doi.org/10.15332/iteckne.v9i2.2759

Keywords:

Anaerobic digestion, Biogas, Fique´s bagasse, Lignocellulosic waste, Mechanical treatment

Abstract

The aim of this work was to evaluate the effect of particle size of fique`s bagasse (FB) on anaerobic biodegradation and biogas production, by means of co-digestion of this lignocellulosic substrate using both bovine ruminal fluid and pig manure as inoculums. Anaerobic reactors were incubated by 8 days. Reducing sugar, Volatile Fatty Acid (VFA) and methane productions were measured using three different bagasse particle diameter; 5 mm (bagasse´s natural size), 2.36 mm and 0.85 mm. Reduction of bagasse particle size increased reducing sugars formation and improved substrate mass transfer to microbial inoculums. At minor particle size it was favored hydrolytic step and VFA production. Natural particle sizes of bagasse were more difficult to biodegrade than lower ones. In this sense, methane concentration was increased 19% when 0.8 mm particle size was used. Anaerobic fermentation processes were carried out at 25°C and 39°C. Methane production at 25°C, show that these microbial consortia are able to resist temperature changes and transform all products on anaerobic digestion process.

Downloads

Download data is not yet available.

Author Biographies

Liliana del Pilar Castro Molano, Universidad San Buenaventura

Ingeniera Química PhD, Universidad Industrial de Santander. Docente Tiempo Completo, Universidad San Buenaventura, Cartagena, Colombia

Carolina Guzmán Luna, Universidad Industrial de Santander (UIS)

Bacterióloga PhD, Universidad Industrial de Santander. Docente Tiempo Completo, Universidad Industrial de Santander, Bucaramanga, Colombia

Humberto Escalante Hernández, Universidad Industrial de Santander (UIS)

Ingeniero Químico. PhD, Industrial de Santander. Docente Tiempo Completo, Universidad Industrial de Santander, Bucaramanga, Colombia

References

[1] P. Barrera, X. Salas, L. Castro, C. Ortiz and H. Escalante, “Estudio preliminar de la bioproducción de metano a partir de los residuos del proceso de beneficio del fique”, (Preliminary study for methane bioproduction from the waste generated in the fique production).Revista Ion, vol. 22, n°1, pp. 21-25, 2009.

[2] C González, León and P. A. García, “Different pretreatments for increasing the anaerobic biodegradability in swine manure”, Bioresource Technology, vol. 99, n° 18, pp. 8710–8714, 2008.

[3] A.T.W.M. Hendriks and G. Zeeman, “Pretreatments to enhance the digestibility of lignocellulosic biomass”, Bioresource Technology, vol. 100, n° 1, pp. 10–18, 2009.

[4] S. Prasad, A. Singh and H.C. Joshi, “Ethanol as an alternative fuel from agricultural, industrial and urban residues”, Resources, Conservation and Recycling, vol. 50, n°1, pp. 1-39, 2007.

[5] C. Sullivan, P. Burrell, W. Clarke and L. Blackall, “Comparison of cellulose solubilisation rates in rumen and landfill leachate inoculated reactors”, Bioresource Technology, vol. 97 n°18, pp. 2356-2363, 2006.

[6] I. M. Buendía, F. J. Fernández, J. Villaseñor and L. Rodríguez, “Feasibility of anaerobic co-digestion as a treatment option of meat industry wastes”, Bioresource Technology, vol. 100, n°6, pp. 1903-1909, 2009.

[7] A. Mshandete, A. Kivaisi, M.S.T. Rubindamayugi and B. Mattiasson, “Anaerobic batch co-digestion of sisal pulp and fish wastes”, Bioresource Technology, vol. 95, n°1, pp. 19-24, 2004.

[8] Z.B. Yue, H.Q. Yu, H. Harada and Y.Y. Li, “Optimization of anaerobic acidogenesis of an aquatic plant, Canna indical by rumen cultures”, Water Research, vol. 41, n°11, pp. 2361-2370, 2006.

[9] R. Chamy, O. Cofré, D. Alcazar and P. Chinga, “Codigestión de RSU y lodos aerobios residuales, como alternativa a procesos de tratamiento tradicionales”, (Co-digestion of MSW and aerobic waste sludge as an alternative to traditional treatment processes), Congreso Interamericano de Ingeniería Sanitaria y Ambiental 1-7, 2002.

[10] S. Rebac, J. Ruskova, S. Gerbens, J. Van Lier, A. Stams and G. Lettinga, “High-Rate Anaerobic Treatment of Wastewater under Psychrophilic Conditions”, Journal of Fermentation and Bioengineering, vol.47, n°12, pp. 231-238, 1995.

[11] A. J. Ward, P.J. Hobbs, P.J. Holliman and D. Jones, “Optimization of the Anaerobic Digestion of Agricultural Resources”, Bioresource Technology, vol. 99, n°17, pp. 7928–7940, 2008.

[12] S. Sharma, I. Mishra, M. Sharma and J. Saini, “Effect of particle size on biogas generation from biomass residues”,Biomass y Bioenergy, vol.17, n° 4, pp. 251- 263, 1988.

[13] D. J. Hills and K. Nakano, “Effects of particle size on anaerobic digestion of tomato solid wastes”, Agricultural wastes, vol. 10, n°4, pp. 285-295, 1984.

[14] A. Mshandete, A. Kivaisi, M.S.T. Rubindamayugi and B. Mattiasson, “Anaerobic batch co-digestion of sisal pulp and fish wastes”. Bioresource Technology. Vol.95, n°1, pp. 19-24. 2004.

[15] L. Guerrero, C Rivadeneira and R. Chamy, “Estudio de la etapa hidrolítica de la degradación anaerobia de almidón en residuos de maíz”, (Study of the hydrolytic stage of anaerobic degradation of starch in corn residue), Congreso Interamericano de Ingeniería Sanitaria y Ambiental. Departamento de Procesos Químicos, Biotecnológicos y Ambientales, Universidad Técnica Federico Santa María, Valparaíso, 1-7, 2004.

[16] Guía ambiental del subsector fiquero, (Environmental Guide fique’s Subsector), Ministerio de Agricultura y Desarrollo Rural, Colombia, edición 2, pp. 21-58, 2006.

[17] P.J. Van Soest, J.B. Robertson and B.A. Lewis, “Carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition”, Symposium, Journal of Dairy Science, vol.74, n°10, pp. 3583- 3597, 1991.

[18] G. Miller, “Use of DinitrosaIicyIic Acid Reagent for Determination of Reducing Sugar”. Analytical Chemistry, vol. 31, n°3, pp. 426-428,1959.

[19] G. K. Anderson and G. Yang, “Determination of bicarbonate and total volatile acid concentration in anaerobic digesters using a simple titration”, Water Environment Research 64, pp. 53–59, 1992.

[20] S. Kusch, H. Oechsner and T. Jungbluth, “Biogas production with horse dung in solid-phase digestion systems”. Bioresource technology, vol. 99, n°5, pp. 1280-1292, 2007.

[21] L. Guerrero, C Rivadeneira and R. Chamy, “Estudio de la etapa hidrolítica de la degradación anaerobia de almidón en residuos de maíz”, (Study of the hydrolytic stage of anaerobic degradation of starch in corn residue), Congreso Interamericano de Ingeniería Sanitaria y Ambiental. Departamento de Procesos Químicos, Biotecnológicos y Ambientales, Universidad Técnica Federico Santa María, Valparaíso, 1-7, 2004.

[22] V. Vavilin, B. Fernandez, J. Palatsi and X. Flotats, “Hydrolysis kinetics in anaerobic degradation of particulate organic material: An overview”, Waste Management, vol. 28, n° 6, pp. 939-951, 2008.

[23] G. Lettinga, S. Rebac and G. Zeeman, “Challenge of psychrophilic anaerobic wasterwater treatment”, Trends in Biotechnology, vol. 19, n°9, pp.363-370, 2001.

[24] L.M. Palmowski and J.A. Müller, “Anaerobic degradation of organic materials - significance of the substrate surface area”, Water Science & Technology, vol.47, n°12, pp.231-238 2003.

[25] M. Carlsson, A. S. Lagerkvist, F. Morgan Sagastume. “The effects of substrate pre-treatment on anaerobic digestion systems: A review”. Waste Management, vol 32, n° 9, pp. 1634-1650.

Downloads

Published

2012-07-01

How to Cite

Castro Molano, L. del P., Guzmán Luna, C., & Escalante Hernández, H. (2012). Influence of Particle Size and Temperature on Methane Production From Fique’s Bagasse. ITECKNE, 9(2), 72–77. https://doi.org/10.15332/iteckne.v9i2.2759

Issue

Section

Research and Innovation Articles