Mechanical characterization of polylactic acid, polycaprolactone and Lay-Fomm 40 parts manufactured by fused deposition modeling, as a function of the printing parameters

Authors

  • Jessica Zuleima Parrado-Agudelo Universidad Nacional de Colombia Bogotá
  • Carlos Narváez-Tovar Universidad Nacional de Colombia Bogotá

DOI:

https://doi.org/10.15332/iteckne.v16i2.2354

Keywords:

Fused deposition modeling FDM, polylactic acid PLA, polycaprolactone PCL, Lay-Fomm 40, mechanical characterization, printing parameters

Abstract

This study aims to determine the mechanical properties of parts manufactured by Fused Deposition Modeling (FDM) using three biocompatible polymer materials: Polylactic Acid (PLA), Polycaprolactone (PCL) and Lay-Fomm 40. Also, it was analyzed the influence of different printing parameters, material selection, infill percentage, and raster angle, over the mechanical properties. The samples were subjected to tension and compression tests using a universal testing machine, and elastic modulus, yield stress, and ultimate stress were obtained from the stress-strain curves. PLA samples have the highest elastic modulus, yield stress and ultimate stress for both compression and tension tests, for example, the ultimate tensile stress with infill percentage of 30 % and raster angle of 0-90° has an average value of 41.20 MPa, while PCL samples had an ultimate tensile stress average value of 9.68 MPa. On the other hand, Lay-Fomm40 samples had the highest elongations, with percentage values between 300 and 600 %. Finally, ANOVA analysis showed that the choice of the material is the leading printing parameter that contributes to the mechanical properties, with percentages of 84.20% to elastic modulus, 93.30% to yield stress, and 82.44% to ultimate stress. The second important factor is the raster angle, with higher strengths for the 0-90° when compared to 45-135°. On the other hand, the contribution of the infill percentage to the mechanical properties was no statistically significant. The obtained results could be useful for material selection and 3D printing parameters definition for additive manufacturing of scaffolds, implants, and other structures for biomedical and tissue engineering applications.

Downloads

Download data is not yet available.

References

U.M. Dilberoglu, B. Gharehpapagh, U. Yaman, y M. Dolen, “The role of additive manufacturing in the era of Industry 4.0”, Procedia Manufacturing, vol. 11, pp. 545-554, 2017. https://doi.org/10.1016/j.promfg.2017.07.148

O. Abdulhameed, A. Al-Ahmari, W. Ameen y S. Hammad Mian, “Additive manufacturing: Challenges, trends, and applications”, Advances in Mechanical Engineering, vol. 11(2), pp. 1-27, 2019. https://doi.org/10.1177/1687814018822880

T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, y D. Hui, “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges”, Composites Part B: Engineering, vol. 143, pp. 172-196, 2018. https://doi.org/10.1016/j.compositesb.2018.02.012

K.V. Wong y A. Hernández, “A Review of Additive Manufacturing,” ISRN Mechanical Engineering, vol. 2012, Article ID 208760, 10 p., 2012. http://dx.doi.org/10.5402/2012/208760

T.N.A.T. Rahim, A. M. Abdullah, y H.Md. Akil, “Recent Developments in Fused Deposition Modeling-Based 3D Printing of Polymers and Their Composites”, Polymer Reviews, 2019. https://doi.org/10.1080/15583724.2019.1597883

K.L. Álvarez, R.F. Lagos, y M. Aizpun, “Influencia del porcentaje de relleno en la resistencia mecánica en impresión 3D por medio del método de Modelado por Deposición Fundida (FDM)”, Ingeniare. Revista Chilena de Ingeniería, vol. 24, no. Especial, pp. 17-24, 2016. http://dx.doi.org/10.4067/S0718-33052016000500003

E. Cuan-Urquizo, E. Barocio, V. Tejada-Ortigoza, R.B. Pipes, C.A. Rodríguez, y A. Roman-Flores, “Characterization of the Mechanical Properties of FFF Structures and Materials: A Review on the Experimental, Computational and Theoretical Approaches”, Materials, vol. 12 (6), 2019. https://doi.org/10.3390/ma12060895

J. Cantrell et al., “Experimental Characterization of the Mechanical Properties of 3D Printed ABS and Polycarbonate Parts”. En: S. Yoshida, L. Lamberti y C. Sciammarella (eds), Advancement of Optical Methods in Experimental Mechanics, vol. 3. pp. 89-105, Conference Proceedings of the Society for Experimental Mechanics Series. Springer, 2017. https://doi.org/10.1007/978-3-319-41600-7_11

B. Banjanin, G. Vladić, M. Pál, S. Baloš, M. Dramićanin, M. Rackov, y I. Kneţević, “Consistency analysis of mechanical properties of elements produced by FDM additive manufacturing technology”, Revista Matéria, vol. 23(4), 2018. http://dx.doi.org/10.1590/s1517-707620180004.0584

Z. Liu, Y. Wang, B. Wu, C. Cui, Y. Guo, y C. Yan, “A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts”, The International Journal of Advanced Manufacturing Technology, vol.102, pp. 2877–2889, 2019. https://doi.org/10.1007/s00170-019-03332-x

J. Torres, M. Cole, A. Owji, Z. DeMastry, y A. Gordon, “An approach for mechanical property optimization of fused deposition modeling with polylactic acid via design of experiments”, Rapid Prototyping Journal, vol. 22 (2), pp. 387-404, 2016. https://doi.org/10.1108/RPJ-07-2014-0083.

A. Haryska, J. Kucinska-Lipka, A. Sulowska, I. Gubanska, M. Kostrzewa y H. Janik, “Medical-Grade PCL Based Polyurethane System for FDM 3D Printing—Characterization and Fabrication”, Materials, vol. 12 (6), 2019. DOI: 10.3390/ma12060887

L. Konieczna, M. Belka, M. Okonska, M. Pyszka, y T. Baczek, “New 3D-printed sorbent for extraction of steroids from human plasma preceding LC–MS analysis”, Journal of Chromatography A, 1545 pp. 1-11, 2018. https://doi.org/10.1016/j.chroma.2018.02.040

MatterHackers Inc. “PORO-LAY LAY-FOMM 40 Porous Filament”, 2018. [En línea]. Disponible https://www.matterhackers.com/store/l/poro-lay-lay-ommfilament-175mm/sk/MLWKN3PY. [Acceso Feb. 20, 2019].

M. Velasco-Peña, J. Rodríguez-Suárez, y D. Restrepo-Ávila, “Caracterización de propiedades mecánicas de piezas en ABS en función de parámetros de proceso de manufactura aditiva FDM”, en XXI Congreso Nacional de Ingeniería Mecánica, 2016, pp. 716-722.

ASTM, D638 Standard Test Method for Tensile Properties of Plastics 1. ASTM INTERNATIONAL, 2015. https://doi.org/10.1520/D0638-14.1.

ASTM, D695 Standard Test Method for Compressive Properties of Rigid Plastics 1. ASTM INTERNATIONAL, 2015. https://doi.org/10.1520/D0695-08.2.

Minitab Inc. “MiniTab 18 Support”, 2017. [En línea] Disponible https://support.minitab.com/es-mx/minitab/18/help-and-how-to/modeling-statistics/anova/supporting-topics/basics/what-is-anova/. Acceso Feb. 20, 2019].

Published

2019-12-16

How to Cite

Parrado-Agudelo, J. Z., & Narváez-Tovar, C. (2019). Mechanical characterization of polylactic acid, polycaprolactone and Lay-Fomm 40 parts manufactured by fused deposition modeling, as a function of the printing parameters. ITECKNE, 16(2), 111–117. https://doi.org/10.15332/iteckne.v16i2.2354

Issue

Section

Research and Innovation Articles