Low energy impact and tensile stress of hemp fibre reinforced bioepoxi laminates before and after seawater immersion

  • Fabuer Ramón-Valencia Ph.D (c), Escuela Técnica Superior de Náutica y Máquinas Navales, Universidad del País Vasco Portugalete,
  • Alberto Lopez-Arraiza Ph.D. Departamento. Ciencias y Técnicas de la Navegación Máquinas y Construcciones Navales, Grupo de investigación KAINAVAL, Universidad del País Vasco Portugalete,
  • Bladimir Ramón-Valencia Ph.D. Facultad de Ingenierías y Arquitectura Universidad de Pamplona Pamplona,
  • Jairo Lenin Ramón-Valencia Ph.D. Grupo de Investigación BIOAXIS Universidad del Bosque Bogotá,
  • José Francisco Ibla-Gordillo Ph.D. Grupo de Investigación BIOAXIS Universidad del Bosque Bogotá,
Keywords: Biocomposite, hemp fibre, impact resistance, tensile stress

Abstract

This experimental work is aimed at the mechanical characterization of a new biocomposite. Such material is a no-woven hemp fibre reinforced bioepoxi (SuperSap®) manufactured by infusion. The laminate was immersed in seawater during a bioactivity period of six months. The impact behavior, before and after seawater immersion, under low-velocity impact at E0=20J and environment temperature of T=23ºC was investigated. Besides, tensile stress tests were performed and the breaking surfaces were observed by Scanning Electron Microscopy (SEM). The results show stiffness lost due to resin degradation after seawater immersion. The water absorption pattern of the new biocomposite leads to increase the dissipated impact energy.

Downloads

Download data is not yet available.

References

[1] F.M. AL-Oqla and S.M. Sapuan, “Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry,” J.Clean.Prod., vol. 66, no. 0, pp. 347-354, Mar. 2014.

[2] A.D. Kelkar, J.S. Tate and P. Chaphalkar, “Performance evaluation of VARTM manufactured textile composites for the aerospace and defense applications,” Materials Science and Engineering: B, vol. 132, no. 1–2, pp. 126-128, Jul. 2006.

[3] J.M. Corum, R.L. Battiste and M.B. Ruggles-Wrenn, “Low-energy impact effects on candidate automotive structural composites,” Composites Sci.Technol., vol. 63, no. 6, pp. 755-769, Jun. 2003.

[4] M.J. John and S. Thomas, “Biofibres and biocomposites,” Carbohydr.Polym., vol. 71, no. 3, pp. 343-364, Ago. 2008.

[5] L. Marrot, A. Bourmaud, P. Bono and C. Baley, “Multiscale study of the adhesion between flax fibers and biobased thermoset matrices,” Mater Des, vol. 62, no. 0, pp. 47-56, Oct. 2014.

[6] H.N. Dhakal, V. Arumugam, A. Aswinraj, C. Santulli, Z.Y. Zhang and A. Lopez-Arraiza, “Influence of temperature and impact velocity on the impact response of jute/UP composites,” Polym.Test., vol. 35, no. 0, pp. 10-19, May. 2014.

[7] S. Corradi, T. Isidori, M. Corradi, F. Soleri and L. Olivari, “Composite boat hulls with bamboo natural fibres,” International Journal of Materials & Product Technology, vol. 36, no. 1-4, pp. 73-89, Ago. 2009.

[8] S.V. Joshi, L.T. Drzal, A.K. Mohanty and S. Arora, “Are natural fiber composites environmentally superior to glass fiber reinforced composites?” Composites part A: applied science and manufacturing, vol. 35, no. 3, pp. 371-376, Mar. 2004.

[9] L. Yan, N. Chouw and K. Jayaraman, “Flax fibre and its composites – A review,” Composites Part B: Engineering, vol. 56, no. 0, pp. 296-317, Ene. 2014.

[10] A.Shalwan and B.F. Yousif, “In state of art: Mechanical and tribological behaviour of polymeric composites based on natural fibres,” Mater Des, vol. 48, no. 0, pp. 14-24, Jun. 2013

[11] M. Jacob, S. Thomas and K.T. Varughese, “Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites,” Composites Sci.Technol., vol. 64, no. 7–8, pp. 955-965, Jun. 2004.

[12] D.B. Dittenber and H.V.S. GangaRao, “Critical review of recent publications on use of natural composites in infrastructure,” Composites Part A: Applied Science and Manufacturing, vol. 43, no. 8, pp. 1419-1429, Ago. 2012.

[13] G. Koronis, A. Silva and M. Fontul, “Green composites: A review of adequate materials for automotive applications,” Composites Part B: Engineering, vol. 44, no. 1, pp. 120-127, Ene. 2013.

[14] F.P. La Mantia and M. Morreale, “Green composites: A brief review,” Composites Part A: Applied Science and Manufacturing, vol. 42, no. 6, pp. 579-588, Jun. 2011.

[15] M.P.M. Dicker, P.F. Duckworth, A.B. Baker, G. Francois, M.K. Hazzard and P.M. Weaver, “Green composites: A review of material attributes and complementary applications,” Composites part A: applied science and manufacturing, vol. 56, no. 0, pp. 280-289, Ene. 2014.

[16] D.D.R. Cartié and P.E. Irving, “Effect of resin and fibre properties on impact and compression after impact performance of CFRP,” Composites part A: applied science and manufacturing, vol. 33, no. 4, pp. 483-493, Abr. 2002.

[17] E.V. González, P. Maimí, P.P. Camanho, C.S. Lopes and N. Blanco, “Effects of ply clustering in laminated composite plates under low-velocity impact loading,” Composites Sci.Technol., vol. 71, no. 6, pp. 805-817, Dic. 2011.

[18] A.Agirregomezkorta, A.B. Martínez, M. Sánchez-Soto, G. Aretxaga, M. Sarrionandia and J. Aurrekoetxea, “Impact behaviour of carbon fibre reinforced epoxy and non-isothermal cyclic butylene terephthalate composites manufactured by vacuum infusion,” Composites Part B: Engineering, vol. 43, no. 5, pp. 2249-2256, Jul. 2012.

[19] V. Fombuena, L. Bernardi, O. Fenollar, T. Boronat and R. Balart, “Characterization of green composites from biobased epoxy matrices and bio-fillers derived from seashell wastes,” Mater Des, vol. 57, no. 0, pp. 168-174, Jun 2014.
Published
2014-12-31
How to Cite
Ramón-Valencia, F., Lopez-Arraiza, A., Ramón-Valencia, B., Ramón-Valencia, J., & Ibla-Gordillo, J. (2014). Low energy impact and tensile stress of hemp fibre reinforced bioepoxi laminates before and after seawater immersion. ITECKNE, 11(2), 190-195. https://doi.org/https://doi.org/10.15332/iteckne.v11i2.732
Section
Research and Innovation Articles