Fiber bragg grating sensors’ validation for strain and temperature

  • Cristian Andrés Triana-Infante M.Sc Investigador Grupo de Investigación en Electrónica de Alta Frecuencia y Telecomunicaciones Universidad Nacional de Colombia Bogotá,
  • Margarita Varón-Durán Ph.D Profesor Asociado Universidad Nacional de Colombia Bogotá,
  • Daniel Pastor-Abellán Ph.D Catedrático Universidad Politécnica de Valencia Valencia,
Keywords: Optical fiber sensor, structural health monitoring, fiber Bragg gratings, strain measurement, temperature measurement, optical sensor, FBG

Abstract

In this research, the characteristic constants for  optical  fiber  Bragg  grating  strain  sensors  were  determined  for  their  use  in  metallic  structures.  Three different experiments were performed with the purpose of finding the constant relationship between the optical wavelength reflected by the FBG sensor and the strain or temperature incidents in a specific structure. It was established a comparison between the behavior of optical sensors versus electrical sensors used traditionally. From these experiments it was obtained a constant value for temperature values between 20°C and 70°C; and for strain from zero up to 1800 με. All measurements were taken in ‘in-situ’ conditions for tests of metallic structures. The results show a higher speed of response for  the  optical  sensors  when  compared  with  electrical  resistance  strain  gauges  or  thermocouples. Also, fiber Bragg grating sensors show a larger operating range in tensile tests.

Downloads

Download data is not yet available.

References

[1] A. Othonos and K. Kalli, Fiber Bragg Gratings, “Fundamentals and Applications in Telecomunications and Sensing”. Boston: Artech House, 1999.

[2] A. Méndez, “Fiber Bragg grating sensors: a market overview,” presented at Third European Workshop on Optical Fibre Sensors, Napoli, Italy, 2007.

[3] J. Albert, A. Cusano, A. Cutolo, “Fiber Bragg Grating Sensors: A Look Back, Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation,” Bentham Science Publishers Ltd., 2011.

[4] J. W. Miller y A. Méndez, “Fiber Bragg grating sensors: Market overview and new perspectives, de Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation” Bentham Science Publishers Ltd., 2011.

[5] Liang Ren ; Hong-Nan Li ; Jing Zhou ; Dong-Sheng Li and Li Sun “Health monitoring system for offshore platform with fiber Bragg grating sensors”, Opt. Eng. 45(8), 084401 (August 16, 2006). ; http://dx.doi.org/10.1117/1.2335858

[6] Z. Zhou, T. Graver y J. Ou, “Techniques of advanced FBG sensors: Manufacturing, demodulation, encapsulation and their application in the structural health monitoring of bridges,” Pacific Science Review, vol. 5, no. 1, pp. 116-121, 2003.

[7] K. O. Hill y G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” Journal of Lightwave technology, vol. 15, no. 8, pp. 1263-1276, 1997.

[8] T. Erdogan, “Fiber Grating Spectra,” Journal of Lightwave Technology, vol. 15, no. 8, pp. 1277 – 1294, 1997.

[9] I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden y N. Doran, “UV-written in-fiber bragg grating,” Optical and Quantum Electronics, vol. 28, pp. 93-135, 1996.

[10] K. O. Hill, Y. Fujii, D. C. Johnson y B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Applied Physic Letters, vol. 32, no. 10, pp. 647-649, 1978.

[11] B. Malo, K. Hill, F. Bilodeau, D. Johnson and J. Albert, “Point-by-point fabrication of micro-bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques,” Electronic Letters, vol. 29, no. 18, pp. 1668-1669, 1993.

[12] K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson y J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by uv exposure through a phasemask,” Applied Physics Letters, vol. 62, no. 10, pp. 1035- 1037, 1993.

[13] A. Othonos y X. Lee, “Novel and improved methods of writing Bragg gratings with phase masks,” Photonics Technology Letters, IEEE, vol. 7, no. 10, pp. 1183- 1185, 1995.

[14] A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam y E. J. Friebele, “Fiber grating sensors,” Lightwave Technology, Journal of, vol. 15, no. 8, pp. 1442-1463, 1997.

[15] H. L. J. Ou, “Recent advances of structural health monitoring in mainland china”, Proc. of I International Conf. on Structural health monitoring and Intelligent Infrastructures, 2003.

[16] M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta and D. Bhattacharya, “Fibre bragg gratings in structural health monitoring—present status and applications”, Sensors and Actuators A: Physical. vol. 147, pp 150-164, 2008.

[17] E. J. Antilla, O. H. Krintila, T. K. Laurila, L. V. Lassila, P. K. Vallitu y R. G. Hernberg, “Evaluation of polymerization shrinkage and hydroscopic expansion of fiberreinforced biocomposites using optical fiber bragg grating sensors,” Dental Materials, vol. 24, no. 12, pp. 1720-1727, 2008.

[18] S. Prasad, M. Anitha, K. S. Rao y S. Asokan, “Measurement of stress-strain response of a rammed earth prism in compression using fiber bragg grating sensors,” International Journal on Smart Sensing and Intelligent systems, vol. 4, no. 3, pp. 376-387, 2011.

[19] J. López-Higuera, L. Rodríguez, A. Quintela y A. Cobo, “Fiber optic sensors in structural health monitoring,” Journal of Lightwave Technology, vol. 29, no. 4, pp. 587-608, 2011.

[20] W. Habel y K. Krebber, “Fiber-optic sensor applications in civil and geotechnical engineering,” Photonic Sensors, vol. 1, no. 3, pp. 268-280, 2011.

[21] C. Venditozzi, G. Sindoni, C. Paris y P. del Marmo, “Application of an fbg sensors system for structural health monitoring and high performance trimming on racing yacht,” presented at Fifth International Conference on Sensing Technology (ICST), Palmerston North, New Zealand, 2011.
Published
2014-12-31
How to Cite
Triana-Infante, C., Varón-Durán, M., & Pastor-Abellán, D. (2014). Fiber bragg grating sensors’ validation for strain and temperature. ITECKNE, 11(2), 172-182. https://doi.org/https://doi.org/10.15332/iteckne.v11i2.730
Section
Research and Innovation Articles