Simulation environment 3D and calculation to point, in radiotherapy using diagnostic image processing

  • Óscar Humberto Bernal- Romero M.Sc. (c) Grupo de Óptica Moderna, Universidad de Pamplona. Pamplona,
  • Martha Lucía Molina-Prado Ph.D. Grupo de Óptica Moderna, Universidad de Pamplona. Pamplona,
  • Néstor Alonso Arias- Hernández Ph.D. Grupo de Óptica Moderna, Universidad de Pamplona. Pamplona,
Keywords: Medical Diagnostic Images, image processing, simulation environment, teletherapy, dosimetry

Abstract

The main goal of radiation therapy is to provide a high dose of ionizing radiation to the volume defined as injury or target, and reduce the dose to organs or tissues that are close to its anatomy, without subdosificar the treatment area. Due to this, the three-dimensional visualization of the treatment area is of great importance in subsequent simulation and treatment planning. This is a of the importance of using medical diagnostic images in this process. The information visual of medical diagnostic images done in studies carcinogenic ill patients  are  obtained  with  diagnostic  equipment  (for  this project will focus on Computed Tomography CT and NMR Nuclear  Magnetic  Resonance),  allow the acquisition of data  that  has  great  importance  for  treatment. By processing this group of images, the volume reconstruction is obtained (3D visualization) from tumor areas of each tissue or areas of interest, through of processing digital of images. The zones reconstruction 3D of interest permitted determining simulation parameters for teletherapy treatments as: the delimitation of area to be treated, reducing surrounding  areas  or  organs. Additionally, it obtained  the  information  for  focusing  of  the  treatment beam,  for  determining  field  sizes,  angles  of  the  couch, gantry  and  collimator.  With these data and calibration data processing equipment (Accelerator), the treatment time or  calculation point  is  determined, which  allow  in the Radiotherapy improve treatment and its results.

Downloads

Download data is not yet available.

References

[1] W. E. Burcham, “Física Nuclear”, 2nd ed. Barcelona, España: Ed. Reverté, 2003, cap.1-5, pp. 47-153.

[2] C. S. Pedrosa,R. Casanova, “Monografía de Diagnóstico por imágenes”. Madrid, España: Mc Graw-Hill, 1991, pp. 13-160.

[3] G. Passariello, F. Mora, “Imágenes Médicas: Adquisición, Análisis, Procesamiento e Interpretación. Miranda, Venezuela: Universidad Simón Bolívar, 1995, pp. 2-47.

[4] P. Sánchez Galiano, “Introducción a la física de la radioterapia”. Viena, Austria: Hospital Central de Asturias, Unidad de Radiofísica, 2005, pp. 1-72.

[5] H. Ziessman, JP. OMalley, “Medicina Nuclear (los requisitos en radiología)”, 3th. ed. Madrid, España: Elsevier, 2007, pp. 52-158.

[6] Varian Medical System, “Series Clinic Acelerator System Basics”, Palo Alto California, USA: Varian, 1998.

[7] J. P. Gunilla, “Manual de Física de la Radioterapia (La teleterapia)”. Barcelona, España: Masson, 1996, pp. 1-60.

[8] Organismo Internacional de Energía Atómica, “Determinación de la Dosis absorbida en haces de fotones y electrones en Agua (Código de Práctica Internacional), 2nd ed. Viena, Austria: Colección de Informes técnicos, no. 277, 1998, pp. 1-76.

[9] R. González and R. E. Woods, “Tratamiento Digital de Imágenes”, 3th. ed. Delaware, USA: Wilmington. Addison-Wesley Libero America S.A., 1998, cap.1-4 .

[10] J. Esquela Elizondo and L. E. Palofox. “Fundamentos de Procesamiento de Imagen”. USA: Conatec 2002, Universidad Autónoma de Baja California, 2002, pp. 1-49.

[11] A. C. Kak. “Principles of Computerized tomographic Imaging”, 5th ed. Philadelphia, PA, USA: Electronic Copy by A.C. Kak and Malcom Staney, IEEE Press, 1999, cap.1-7, pp. 5-110, 276-292.

[12] J. G. Proakis, “Digital Signal Processing”, 3th ed. Los altos California, USA: Pearson Prentice Hall, 2007, pp. 2-95.

[13] J. Canny, “A Computational Approach to Edge Detection”, IEEE Trans. Pattern Analysis and Machine Intelligence, vol.PAMI-8, Issue 6, 1986, pp. 679–698.

[14] C. Perez, and L. Brady. ”Perez and Brady’s Principles and Practice of Radiation Oncology”, 5th ed. Philadelphia, USA: Lippincott Williams & Wilkins, 2008, cap.1-10, pp 76-215.

[15] International Commission on Radiation Units and Measurements, “Prescripción, Registro y Elaboración de Informes en la Terapia con Haces de Fotones (Versión en Español de la Sociedad Española de Física Médica), reporte ICRU, no. 50, 1993.

[16] J. Dobbs, A. Barrett and D. Ash, “Practical Radiotherapy Planning”, 3th ed. New York, USA: New York. Arnold, 1992, cap.1-4, pp. 1-33.

[17] H. Vélez y W. Rojas. Radiología e Imágenes Diagnósticas, 2th ed. Medellin: Corporación para Investigaciones Biológicas, 2007.

[18] E. Podgorsak, “Review of Radiation Oncology Physics: A handbook for teacher and students”. Montreal, Canada: Department of Medical Physics Mc Gill, University Healt Center, 2003, pp. 249-316.

[19] Instituto de Geología y Minas (Colombia), “Curso de Protección Radiológica para el manejo de Material Radioactivo”, Bogotá,Colombia: Grupo de Seguridad Nuclear y Radioprotección, 2002.

[20] International Atomic Energy Agency (IAEA, Absorbed Dose Determination in External Beam Radiotherapy (An International Code of practice for dosimetry Based on Standards of Absorved Dose to Water), “Tecnical Reports Series”, no. 398, 2000.

[21] F. H. Attix, “Introduction of Radiological Physicis and Radiation Dosimeter”. Madison Wisconsin, USA: John Wiley & Sons, 1986, pp. 203-290.

[22] F. M. Khan, “The Physics of Radiation Therapy, 4th ed. Baltimore: Ed. Lippincott williams & wilkins, 2010, pp. 26-95,158-175; ec, pp.162; ec, pp. 10-8.

[23] Gunilla C. “Radiation Therapy Planning”, 2nd ed. Durham, USA: Ed. Durham, McGraw-Hill, 1992, cap.1-3, pp. 32-159.

[24] O. Bernal y S. Martínez, “Dosimetría para Campos Asimétricos”. Tunja: Universidad Pedagógica y Tecnológica de Colombia, 2004.

[25] E. Barbará, R. Sánchez, E. González, “Comparación de Algoritmos de Segmentación de Ruido Aplicados a Imágenes de Resonancia Magnética”, Revista Electrónica, Automática y Comunicaciones (RIELAC). vol. 33, no, 3, 2012.
Published
2014-12-31
How to Cite
Bernal- Romero, Óscar, Molina-Prado, M., & Arias- Hernández, N. (2014). Simulation environment 3D and calculation to point, in radiotherapy using diagnostic image processing. ITECKNE, 11(2), 129-139. https://doi.org/https://doi.org/10.15332/iteckne.v11i2.722
Section
Research and Innovation Articles