Combustion optimization using methane number and wobbe index as evaluation criteria

  • Jaqueline Saavedra Ph. D. Instituto Colombiano del Petróleo. Piedecuesta
  • Lourdes Merino M.Sc. Grupo de Investigación CIDES Facultad de Ingeniería Química. Universidad Industrial de Santander. Bucaramanga
  • María Gómez Ingeniero Químico. Grupo de Investigación CIDES. Facultad de Ingeniería Química. Universidad Industrial de Santander. Bucaramanga
  • Viatcheslav Kafarov Ph. D. Grupo de Investigación CIDES. Facultad de Ingeniería Química. Universidad Industrial de Santander. Bucaramanga
Keywords: Streams, Gas fuel, Wobbe Index, Methane Number

Abstract

In an Oil refining process, 113 streams have been identified as contributors for the gas fuel net which is used in furnaces and boilers to supply power and steam to the refining process. According to the origin and the previous  treatment  of  the  gases,  these  gas  streams have  different  compositions  that  vary  from  natural  gas composition which creates technical and structural problems  that  can  affect  not  only  the  equipment  but  also the refining process. Based on the previous statement, the  combustion  gas  fluxes  are  analyzed  not  only  by  its components but also as a fuel gas. The combustion efficiency and the stability of the operation is evaluated ta king into account two parameters in concordance with the process characteristics and then used as criteria for assessing the potential effect derived from the fuel composition in relation to energy efficiency and equipment integrity. The principal result was a proposal for an integral fuel net.

Downloads

Download data is not yet available.

References

[1] D. Montaña, “Determinación de las propiedades de combustión e identificación de problemas de intercambiabilidad de las mezclas de gas natural con otros combustibles de refinería,” Tesis de maestría en ingeniería química, Universidad Industrial de Santander, Bucaramanga, 2011.

[2] J. Cortes, J. Hernández, “Validación de la intercambiabilidad de gases en el contexto colombiano: calentadores instantáneos de agua,” Especialización en gases combustibles. Universidad de Antioquia. Medellín, 2003.

[3] A. Álvarez, “Estudio sobre la influencia de la composición química de los principales gases naturales colombianos sobre el rendimiento de la conversión y el desempeño mecánico de los motores a gas en Colombia,” Especialización en gases combustibles. Universidad de Antioquia. Medellín, 2003.

[4] M. Faruque, I. Karimi, C. Matthew, “Preliminary Synthesis of Fuel Gas Networks to Conserve Energy and Preserve the environment,” In Ind. Eng. Chem. Res, vol. 50(12), pp. 7414 - 7427, 2011.

[5] Appendix A Proposed Regulation Order Amendments to Sections 2290, 2291, 2292.5 and 2292.6, Title 13, “California code of regulations, regarding the compressed natural gas and liquefied petroleum gas specifications in the alternative fuels for motor vehicle regulations; Air Resources Board, California Environmental Protection Agency,” Sacramento,CA, 2002; available at http://www.arb.ca.gov/regact/cng-lpg/appa.pdf (Accessed January 11, 2011).

[6] A. Amell et al, “Tecnología de la combustión de gases y quemadores atmosféricos de premezcla”, Revista Facultad de Ingeniería, Universidad de Antioquia, Medellín, no. 18, Jun. 1999.

[7] J. Saavedra, L. Meriño, D. Montaña, K. Viatcheslav, “Análisis de mezclas combustibles producidas en procesos de refinación”, en V simposio internacional de Biofabricas, I congreso Internacional de Flujos Reactivos, Universidad Nacional de Colombia, Medellín, 2011.

[8] M. Malenshek, D. Olsen, “Methane number testing of alternative gaseous fuels,” in Fuel, vol. 88, pp 650–656, 2009.

[9] GIE Gas Infrastructure Europe, “GIE position paper on impact of including methane number in the European standard for natural gas,” Bruselas, 2012.

[10] L. Galvan, R. Reyes, C. Guedez, D. De Armas, “Los macroprocesos de la industria petrolera y sus consecuencias ambientales,” Universidad, Ciencia y Tecnología, vol. 11, no. 43, pp. 91-97, Puerto Ordaz, Venezuela, 2007.

[11] A. Jagannath, M. Faruque, M. Al-Fadhli, I. Karimi, D. Allen, “Minimize flaring through integration with fuel gas networks,” in Ind. Eng. Chem. Res, vol. 51, no. 39, pp. 12630-12641, 2011.

[12] G. Villaflor, G. Morales, J. Velazco, “Variables significativas del proceso de combustión del gas natural,” Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Beneficio de Minerales. Instituto de Investigaciones para la Industria Química. Información Tecnológica, vol. 19, no. 4, pp. 57-62, 2008.

[13] M. Carlos, “Análisis de la eficiencia de la combustión de gas de refinería en hornos industriales tipo cabina, mediante el estudio de su comportamiento real,” Universidad Industrial de Santander, Tesis de Grado, 2002.

[14] Muller, C. Craig, I. Ricker, N. “Modelling validation, and control of an industrial fuel gas blending system,” Journal of Process Control, 2011.

[15] C. Acevedo, “Estudio sobre la influencia de la composición química de los principales gases naturales colombianos sobre el rendimiento de la conversión y el desempeño mecánico de los motores a gas en Colombia,” Especialización en combustibles Gaseosos. Universidad de Antioquia. Medellín, 2003.
Published
2014-09-17
How to Cite
Saavedra, J., Merino, L., Gómez, M., & Kafarov, V. (2014). Combustion optimization using methane number and wobbe index as evaluation criteria. ITECKNE, 11(1), 76-83. https://doi.org/https://doi.org/10.15332/iteckne.v11i1.528
Section
Research and Innovation Articles