Page Header
DOI: https://doi.org/10.15332/iteckne.v11i1.515

Desarrollo de un sistema embebido con tecnología DSP para un sistema multisensorial (Nariz electrónica).

Development of embedded system with DSP technology for multisensor system (Electronic nose)

Cristhian Manuel Durán-Acevedo, Isaac Torres-López

Abstract - 507 | PDF (Español (España)) - 108 DOC (Español (España)) - 18


Abstract(es_ES)

Este artículo consiste en el desarrollo de un sistema integrado con tecnología DSP para ser aplicado a un sistema multi-sensorial (es decir, nariz electrónica). La idea de este estudio fue mejorar la eficiencia de estos sistemas multisensoriales en aplicaciones portátiles, usando diferentes algoritmos para clasificar tres clases de compuestos volátiles detectados por una matriz de sensores de gases químicos. El software CodeComposer Studio (CCS) fue acoplado con Matlab para la programación de la tarjeta DSP TMS320F28335 de Texas Instruments. Los resultados se obtuvieron a partir de muestras de vino de tres denominaciones diferentes (es decir, manzana, rojo y casillero), que luego fueron clasificadas mediante algoritmos de procesamiento (redes neuronales artificiales). El sistema fue validado mediante la técnica de análisis de componentes principales (ACP), para verificar la reproducibilidad y selectividad del sistema de medición. En los resultados se logró un 83,4 % de tasa de éxito en la calificación de las medidas utilizando DSP Hardware,a través de la implementación de una Red NeuronalArtificial (RNA).

Keywords(es_ES)

Sensor de gases; adquisición de datos; procesamiento; Filtros digitales; Redes neuronales

Abstract(en_US)

This article consists in the development of an embedded system with DSP technology to be applied to a multi-sensory system (i.e. Electronic Nose). The idea of the present study was to improve the efficiency of these multisensory systems in portable applications, using different algorithms to classify three-class of volatile compounds, detected by a chemical gas sensor array. The Code Composer Studio (CCS) software was coupled with Matlab for programming the DSP TMS320F28335 card of Texas Instruments. The results were obtained from samples of wine of three different denominations (i.e., apple, red and Locker), which were then classified by processing algorithms (i.e. artificial neural networks). The system was validated by the technique of principal component analysis (PCA), to verify repeatability and selectivity of the measurement system. In the results, 83.4% of success rate in classification of the measures was obtained using DSP Hardware, through the implementation of an Artificial Neuronal Network (ANN).

Keywords(en_US)

Gas sensor; data acquisition; processing; digital filters; neural network; PCA

References


R. Moreno, G. Caballero, F. Ramón, A. Matia, “La Nariz Electrónica: Estado del Arte,” en Revista (RIAI), vol. 6, no. 3, pp. 76-91, Jul. 2009.

K. Persaud, Dodd. G, “Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose,” in Nature 299, pp. 352 – 355, Sep.1982.

J.W. Gardner, P.N, Bartlett, “A brief history of electronic noses. Sensors and Actuators,” in B: Chemical. vol. 18, no. 1-3, pp. 211-220, Mar. 1994.

J.C. Rodríguez, A.C.M. Durán, “Electronic Odor system to detect volatile Compounds,” R Col Tec Avan (RCTA), vol.2, no. 12, pp. 20-26, 2008.

S. Zhang, C. Xie,D. Zeng, H. Li, Y. Liu, S. Cai, “A sensor array optimization method for electronic noses with sub-arrays,” in Sensand Actu B: Chem, vol.142, no.1, pp. 243-252, Oct. 2009.

B.A. Botre, D.C. Gharpure, A.D. Shaligram, “Embedded Electronic Nose and Supporting Software Tool for its Parameter Optimization,” in Sensand ActuB: Chem, vol.146, no.2, pp. 453-459. Apr. 2010.

B. Shi, L. Zhao,R. Zhi,X. Xi,X. Longjing, “Optimization of electronic nose sensor array by genetic algorithms in Tea quality analysis,” in Math and Com Mod, vol.58, no. 3–4, pp.752-758, Aug. 2013.

P. Saha,S. Ghorai, B. Tudu, R. Bandyopadhyay, N. Bhattacharyya, “Optimization of sensor array in electronic nose by combinational feature selection method,” in SensTech (ICST), pp. 341 – 346. Kolkata, Dec. 2012.

L. Zhang, F. Tian, “A Novel Chaotic Sequence Optimization Neural Network for Concentration Estimation of Formaldehyde by an Electronic Nose,” in CompIntelland ComNet (CICN), Fourth International Conference on, pp. 856 – 859, Nov., 2012.

B. J. Brezmes, E Llobet, X Vilanova, G Saiz, X Correig, “Fruit ripeness monitoring using an electronic nose,” in Sens and Act B: Chem, vol. 69, no. 3, pp. 223–229, Oct. 2000.

J. Rodríguez. C. Durán and A, Reyes, “Electronic Nose for Quality Control of Colombian Coffee through the Detection of Defects in Cup Tests, Sens, vol.10, no.1, pp. 36-46, Dec. 2010.

M. E. Wall, A. Rechtsteiner, L. M. Rocha, “Singular value decomposition and principal component analysis, A Practical Approach to Microarray Data Analysis,” Chapter 5, pp.91–109 USA, 2003.

T. Eklöv, G. Johansson, F.Winquist, I.Lundström, “Monitoring Sausage Fermentation Using an Electronic Nose,” in J of the Scienof F and Agr, vol. 76, no. 4, pp.525-532, Apr. 1998.

J.S., M. Martens, P. Turkki, “Application of an electronic nose system for prediction of sensory quality changes of a meat product (pizza topping) during storage,” in FScand Tec, vol.40, no. 6, pp. 1095-1101, Aug. 2007.

M. Liu, X. Hang,K.Tu, L. Pan, J. Tu. L. Tang, P. Liu, G. Zhan, Q. Zhong. Z. Xiong, “Application of electronic nose in Chinese spirits quality control and flavour assessment,” in FContr, vol. 26, no.2, pp. 564-570, Aug. 2012.

D. Gao, F. Liu, J. Wang, “Quantitative analysis of multiple kinds of volatile organic compounds using hierarchical models with an electronic nose,” in Sen and AcB: Chem, vol. 161, no.1, 3, pp.578-586, Jan. 2012.

F. Benrekia, M. Attari,M. Bouhedda, “Gas Sensors Characterization and Multilayer Perceptron (MLP) Hardware Implementation for Gas Identification Using a Field Programmable Gate Array (FPGA),” in Sens, vol. 13, no.3, pp.2967-2985, Mar. 2013.

K. Song, Q. Wang,Q. Liu, H. Zhang, Y. Cheng, “A Wireless Electronic Nose System Using a Fe2O3 Gas Sensing Array and Least Squares Support Vector Regression,” in Sensors, vol.11, no.1, pp. 485-505, Jan. 2011.


Abstract - 507 | PDF (Español (España)) - 108 DOC (Español (España)) - 18

Refbacks

  • There are currently no refbacks.
ISSN: 1692-1798 (impreso)
ISSN: 2393-3483 (en línea)



Imagen