Page Header
DOI: https://doi.org/10.15332/iteckne.v7i1.346

Amortiguamiento en estructuras de acero mediante tratamiento a cortante

Jhon Jairo Gil Peláez, Luis Suárez

Abstract - 681 | PDF (Español (España)) - 166


Abstract

En este trabajo se evaluó la efectividad de los materiales viscoelásticos para disipar energía en edificios de acero por medio de simulaciones numéricas con elementos finitos usando el programa ABAQUS. El material viscoelástico se aplicó entre dos capas elásticas para crear un tratamiento a cortante. Las curvas de variación del factor de pérdida con respecto al parámetro de cortante para los tres primeros modos de vibración son construidas para la condición de apoyo impuesta por un edificio de corte. Se estudian diferentes combinaciones de espesores y se demuestra que aumentar el espesor de la capa del viscoelástica no implica necesariamente un aumento en la disipación de energía. Los resultados encontrados mostraron que el tratamiento a cortante no es efectivo cuando se aplica en las columnas de edificios de acero.


Keywords

Tratamiento a cortante, materiales viscoelásticos, disipación de energía, vigas emparedado.

References


J. F. Fuller, E. F. Fuchs, and K. J. Roesler, “Influence of harmonics on power distribution system protection,” IEEE Trans. Power Delivery, vol. 3, no.2, pp. 549-557, Apr. 1988

Alberts, T. E., Xia, H., and Chen, Y. (1992). “Dynamic Analysis to Evaluate Viscoelastic Passive Damping Augmentation for the Space Shuttle Remote Manipulator System.” Transactions of the ASME, Dynamics Systems, Measurement, and Control, Vol. 114(3), 468-475

DiTaranto, R. A. (1965). “Theory of Vibratory Bending for Elastic and Viscoelastic Layered Finite-Length Beams.” Journal of Applied Mechanics, 32, 881-886

Flugge, W. (1967). Viscoelasticity, Blaisdell Publishing Company, Waltham, Massachusetts

Gil, J. J., and Suárez, L. E. “Efecto de la Geometría de Vigas con Capas Viscoelásticas en la Disipación de Energía.” ENIEF 2007 XVI Congreso sobre Métodos Numéricos y sus Aplicaciones, Ciudad de Córdoba, Córdoba, Argentina

Johnson, C. D., and Kienholz, D. A. (1982). “Finite Element Prediction of Damping in Structures with Constrained Viscoelastic Layers.” AIAA Journal, 20(9), 1284-1290

Lifshitz, J. M., and Leibowitz, M. (1987). “Optimal Sandwich Beam Design for Maximum Viscoelastic Damping.” International Journal of Solids and Structures, Vol. 23(7), 1027-1034

Luengo, P. “Design of Joints for Damped Structures.” Proceedings of the International Conference: Spacecraft Structures and Mechanical Testing, Noordwijk, The Netherlands, 24-26

Lumsdaine, A., and Scott, R. A. (1995). “Shape Optimization of Unconstrained Beam and Plate Damping Layers.” Design Engineering Technical conferences, Vol. 3 - Part C, 15 - 22

Lunden, R. (1980). “Optimun Distribuction of Additive Damping for Vibrating Frames.” Journal of Sound and Vibration, Vol 72(3), 391-402

Macé, M. (1994). “Damping of Beam Vibrations by Means of a Thin Constrained Viscoelastic Layer: Evaluation of a New Theory.” Journal of Sound and Vibration, 172(5), 577-591

Marceling, J.-L., Trompetti, P., and A. Smati, A. (1992). “Optimal Constrained Layer Damping with Partial Coverage.” Finite Elements in Analysis and Design, Vol. 12, 273-280

Mead, D. J., and Markus, S. (1969). “The Forced vibration of a Three-layer, Damped Sandwich Beam with Arbitrary Boundary Conditions.” Journal of Sound and Vibration, 10(2), 163-175

Oberts, V. H. (1952). “Uber die Damfung der Biegeschwingungen Dunnner Blechedurch Fest Haftende Belage.” Acustica Vol. 2, 181-194

Plunkett, R., and Lee, C. T. (1969). “Length Optimization for Constrained Viscoelastic Layer Damping.” The Journal of the Acoustical of America, Vol. 48(1), 150- 161

Rao, D. K. (1978). “Frequency and Loss Factors of Sandwich Beams Under Various Boundary Conditions.” Journal of Mechanical Engineering Science, 20(5), 271-282

Ross, D., Ungar, E. E., and Kerwin, E. M. (1959). “Damping of Plate Flexural Vibrations by Means of Viscoleastic Laminae.” Structural Damping, Section 3,ASME Monograph on Structural Damping, New York, 49 - 88

Roy, P. K., and Ganesan. (1996). “Dynamic Studies on Beams with Unconstrained layer Damping Treatment.” Journal of Sound and Vibration, Vol. 195(3), 417-427

Soni, M. L., and Bogner, F. K. (1982). “Finite Element Vibration Analysis of Damped Structures.” AIAA Journal, 20, 700-707

Sun, C. T., Sankar, B. V., and Rao, V. S. (1990). “Damping and vibration control of unidirectional composite laminates using add-on viscoelastic materials.” Journal of Sound and Vibration, Vol. 139(2), 277-287

Yildiz, A., and Stevens, K. (1985). “Optimum Thickness Distribution of Unconstrained Viscoelastic Damping Layer Treatments for Plates.” Journal of Sound and Vibration, Vol. 103(2), 183-199

E. Clarke, Circuit Analysis of AC Power Systems, vol. I. New York: Wiley, 1950, p. 81

Brighem, E. O. (1988). The Fast Fourier Transform and its Applications, Prentice Hall, Englewood Cliff, New Jersey

Craig Jr., R. R. (1981). Structural Dynamics an Introduction to Computer methods, john Wiley & Sons, New York

Christensen, R. M. (1971). Theory of Viscoelasticity: an Introduction, Academic Press, New York

Nashif, A. D., Jones, D. I. G., and Henderson, J. P. (1985). Vibration Damping, John Wiley & Sons, New York

Sun, C. T., and Lu, Y. P. (1995). Vibration Damping of Structural Elements, Prentice Hall PRT, Englewood Cliffs, New Jersey


Abstract - 681 | PDF (Español (España)) - 166

Refbacks

  • There are currently no refbacks.
ISSN: 1692-1798 (impreso)
ISSN: 2393-3483 (en línea)



Imagen