Coconut shell ash as a substitute for cement: effect of calcination temperature

Keywords: coconut shell, agro-waste, heat-treatment, mechanical properties, cost analysis

Abstract

The disposal of coconut shell is a waste problem in countries where coconut production is in abundance. When coconut shell is calcinated produces ashes, which are a potential binder material to concrete preparation. In this work, coconut shell was calcinated at 400, 500 and 600 °C for 3 h. The ashes produced were employed as cement substitute. The characteristics of ashes were evaluated by surface area and XRD. The effect of replacing ashes as cement substitute was evaluated by workability and mechanical strength test. Experimental results demonstrated that 600 °C is the most suitable burning temperature for CSA calcination with amorphous SiO2 and low surface area. Results showed that, in contrast to control concrete, that burning temperature decrease concrete workability of concrete. Further, the increasing of burning temperature of coconut shell improves the mechanical strength. The compressive strength of mixture incorporating the ashes of coconut shell burned at 600 °C was higher than the others. Additionally, this temperature was found convincing considering cost to prepare the ashes.

Downloads

Download data is not yet available.

Author Biographies

Ceiler Fabian Cossio-Mena, Universidad Cooperativa de Colombia

Universidad Cooperativa de Colombia. Medellín, Colombia

Eliana Williams-Urango, Universidad Cooperativa de Colombia

Universidad Cooperativa de Colombia. Medellín, Colombia

Dissy Giselle Palacios-Mosquera, Universidad Cooperativa de Colombia

Universidad Cooperativa de Colombia. Medellín, Colombia

Oscar Felipe Arbelaez-Perez, Universidad Cooperativa de Colombia

Universidad Cooperativa de Colombia. Medellín, Colombia

References

[1] Y. A. Villagrán-Zaccardi, A. T. M. Marsh, M. E. Sosa, C. J. Zega, N. De Belie, and S. A. Bernal, “Complete re-utilization of waste concretes–Valorisation pathways and research needs,” Resour. Conserv. Recycl., vol. 177, 2022. doi:10.1016/j.resconrec.2021.105955.

[2] J. Pokorný, R. Ševčík, J. Šál, L. Fiala, L. Zárybnická, and L. Podolka, “Bio-based aggregate in the production of advanced thermal-insulating concrete with improved acoustic performance,” Constr. Build. Mater., vol. 358, no. March, 2022. doi: 10.1016/j.conbuildmat.2022.129436.

[3] K. Celik et al., “High-volume natural volcanic pozzolan and limestone powder as partial replacements for portland cement in self-compacting and sustainable concrete,” Cem. Concr. Compos., vol. 45, pp. 136–147, 2014. doi: 10.1016/j.cemconcomp.2013.09.003.

[4] W. Xing, V. W. Tam, K. N. Le, J. L. Hao, and J. Wang, “Life cycle assessment of recycled aggregate concrete on its environmental impacts: A critical review,” Constr. Build. Mater., vol. 317, 2022. doi: 10.1016/j.conbuildmat.2021.125950.

[5] S. A. Miller, G. Habert, R. J. Myers, and J. T. Harvey, “Achieving net zero greenhouse gas emissions in the cement industry via value chain mitigation strategies,” One Earth, vol. 4, no. 10, pp. 1398–1411, 2021.doi: 10.1016/j.oneear.2021.09.011.

[6] S. A. Miller, A. Horvath, and P. J. M. Monteiro, “Readily implementable techniques can cut annual CO2 emissions from the production of concrete by over 20%,” Environ. Res. Lett., vol. 11, no. 7, 2016. doi: 10.1088/1748-9326/11/7/074029.

[7] A. Alsalman, L. N. Assi, R. S. Kareem, K. Carter, and P. Ziehl, “Energy and CO2 emission assessments of alkali-activated concrete and Ordinary Portland Cement concrete: A comparative analysis of different grades of concrete,” Clean. Environ. Syst., vol. 3, no. April, p. 100047, 2021.doi: 10.1016/j.cesys.2021.100047.

[8] M. N. Amin, T. Murtaza, K. Shahzada, K. Khan, and M. Adil, “Pozzolanic potential and mechanical performance of wheat straw ash incorporated sustainable concrete,” Sustain., vol. 11, no. 2, pp. 1–20, 2019. doi: 10.3390/su11020519.

[9] S. . Bangar, S. . Phalke, A. . Gawade, R. . Tambe, and A. . Rahane, “A review paper on replacement of cement with bagasse,” Int. J. Eng. Sci. Manag., vol. 7, no. March, pp. 127–131, 2017.

[10] H. M. Hamada et al., “Sustainable use of palm oil fuel ash as a supplementary cementitious material: A comprehensive review,” J. Build. Eng., vol. 40, no. July 2020, p. 102286, 2021.doi: /10.1016/j.jobe.2021.102286.

[11] A. Siddika, M. A. Al Mamun, R. Alyousef, and H. Mohammadhosseini, “State-of-the-art-review on rice husk ash: A supplementary cementitious material in concrete,” J. King Saud Univ. - Eng. Sci., vol. 33, no. 5, pp. 294–307, 2021.doi: 10.1016/j.jksues.2020.10.006.

[12] S. Ali, U. Javed, and R. Arsalan, “Eco-friendly utilization of corncob ash as partial replacement of sand in concrete,” Constr. Build. Mater., vol. 195, pp. 165–177, 2019.doi: 10.1016/j.conbuildmat.2018.11.063.

[13] S. Kumari and R. Walia, “Life cycle assessment of sustainable concrete by utilizing groundnut husk ash in concrete,” Mater. Today Proc., vol. 49, pp. 1910–1915, 2021. doi: 10.1016/j.matpr.2021.08.082.

[14] X. Li et al., “A systematic review of waste materials in cement-based composites for construction applications,” J. Build. Eng., vol. 45, no. July 2021, p. 103447, 2022. doi: /10.1016/j.jobe.2021.103447.

[15] R. Tomar, K. Kishore, H. Singh Parihar, and N. Gupta, “A comprehensive study of waste coconut shell aggregate as raw material in concrete,” Mater. Today Proc., vol. 44, pp. 437–443, 2021. doi: 10.1016/j.matpr.2020.09.754.

[16] H. Liu, Q. Li, and S. Ni, “Assessment of the engineering properties of biomass recycled aggregate concrete developed from coconut shells,” Constr. Build. Mater., vol. 342, no. PA, p. 128015, 2022. doi: 10.1016/j.conbuildmat.2022.128015.

[17] E. Quiñones-Bolaños, M. Gómez-Oviedo, J. Mouthon-Bello, L. Sierra-Vitola, U. Berardi, and C. Bustillo-Lecompte, “Potential use of coconut fibre modified mortars to enhance thermal comfort in low-income housing,” J. Environ. Manage., vol. 277, no. October 2020, 2021. doi: 10.1016/j.jenvman.2020.111503.

[18] E. E. Ikponmwosa, S. Ehikhuenmen, J. Emeshie, and A. Adesina, “Performance of Coconut Shell Alkali-Activated Concrete: Experimental Investigation and Statistical Modelling,” Silicon, vol. 13, no. 2, pp. 335–340, 2021. doi: 10.1007/s12633-020-00435-z.

[19] N. Bheel, S. K. Mahro, and A. Adesina, “Influence of coconut shell ash on workability, mechanical properties, and embodied carbon of concrete,” Environ. Sci. Pollut. Res., vol. 28, no. 5, pp. 5682–5692, 2021.doi: 10.1007/s11356-020-10882-1.

[20] A. J. Adeala, J. O. Olaoye, and A. A. Adeniji, “Potential of Coconut Shell Ash as Partial Replacement of Ordinary Portland Cement in Concrete Production,” Int. J. Eng. Sci. Invent., vol. 9, no. 1, pp. 47–53, 2020.

[21] Z. Itam, A. Dzar Johar, A. Syamsir, M. Zainoodin, S. M. M. Shaikh Ahmad Fadzil, and S. Beddu, “Utilization of coconut shell as a supplementary cementitious material in concrete,” Mater. Today Proc., vol. 66, pp. 2818–2823, 2022.doi: 10.1016/j.matpr.2022.06.522.

[22] Y. Shinohara and N. Kohyama, “Quantitative Analysis of Tridymite and Cristobalite Crystallized in Rice Husk Ash by Heating,” Ind. Health, vol. 42, no. 2, pp. 277–285, 2004.doi: 10.2486/indhealth.42.277.

[23] R. S. Bie, X. F. Song, Q. Q. Liu, X. Y. Ji, and P. Chen, “Studies on effects of burning conditions and rice husk ash (RHA) blending amount on the mechanical behavior of cement,” Cem. Concr. Compos., vol. 55, pp. 162–168, 2015.doi:10.1016/j.cemconcomp.2014.09.008.

[24] G. C. Cordeiro, R. D. Toledo Filho, and E. M. R. Fairbairn, “Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash,” Constr. Build. Mater., vol. 23, no. 10, pp. 3301–3303, 2009. doi: 10.1016/j.conbuildmat.2009.02.013

[25] Z. Cao, Y. Cao, H. Dong, J. Zhang, and C. Sun, “Effect of calcination condition on the microstructure and pozzolanic activity of calcined coal gangue,” Int. J. Miner. Process., vol. 146, pp. 23–28, 2016. doi: 10.1016/j.minpro.2015.11.008.

[26] Z. Guo, J. Xu, Z. Xu, J. Gao, and X. Zhu, “Performance of cement-based materials containing calcined coal gangue with different calcination regimes,” J. Build. Eng., vol. 56, no. June, p. 104821, 2022.doi: 10.1016/j.jobe.2022.104821.

[27] V. Blanchar, E. Villalba, S. Monsalve and O. Arbelaez, “Propiedades mecanicas y termicas de plasticos triturados y pelletizados”, Iteckne., vol . 19, no. 2. 2022. doi: 10.15332/iteckne.v19i2.2789

[28] I. S. Agwa, A. M. Zeyad, B. A. Tayeh, and M. Amin, “Effect of different burning degrees of sugarcane leaf ash on the properties of ultrahigh-strength concrete,” J. Build. Eng., vol. 56, no. May, p. 104773, 2022.doi: 10.1016/j.jobe.2022.104773.

[29] Z. Chang, G. Long, Y. Xie, and J. L. Zhou, “Pozzolanic reactivity of aluminum-rich sewage sludge ash: Influence of calcination process and effect of calcination products on cement hydration,” Constr. Build. Mater., vol. 318, no. December 2021, p. 126096, 2022.doi: 10.1016/j.conbuildmat.2021.126096.

[30] G. P. Lyra, M. V. Borrachero, L. Soriano, J. Payá, and J. A. Rossignolo, “Comparison of original and washed pure sugar cane bagasse ashes as supplementary cementing materials,” Constr. Build. Mater., vol. 272, p. 122001, 2021.doi; 10.1016/j.conbuildmat.2020.122001.

[31] M. Rozainee, S. P. Ngo, A. A. Salema, and K. G. Tan, “Fluidized bed combustion of rice husk to produce amorphous siliceous ash,” Energy Sustain. Dev., vol. 12, no. 1, pp. 33–42, 2008. doi: 10.1016/S0973-0826(08)60417-2.

[32] S. A. Memon, S. Khan, I. Wahid, Y. Shestakova, and M. Ashraf, “Evaluating the Effect of Calcination and Grinding of Corn Stalk Ash on Pozzolanic Potential for Sustainable Cement-Based Materials,” Adv. Mater. Sci. Eng., vol. 2020, 2020.doi: 10.1155/2020/1619480.

[33] K. G. Santhosh, S. M. Subhani, and A. Bahurudeen, “Recycling of palm oil fuel ash and rice husk ash in the cleaner production of concrete,” J. Clean. Prod., vol. 354, no. November 2021, p. 131736, 2022.doi: 10.1016/j.jclepro.2022.131736

[34] W. Cao, W. Yi, J. Peng, J. Li, and S. Yin, “Recycling of phosphogypsum to prepare gypsum plaster: Effect of calcination temperature,” J. Build. Eng., vol. 45, no. September 2021, p. 103511, 2022. doi: 10.1016/j.jobe.2021.103511.

[35] M. W. Clark et al., “High-efficiency cogeneration boiler bagasse-ash geochemistry and mineralogical change effects on the potential reuse in synthetic zeolites, geopolymers, cements, mortars, and concretes,” Heliyon, vol. 3, no. 4, p. e00294, 2017.doi: 10.1016/j.heliyon.2017.e00294

[36] B. S. Thomas, J. Yang, K. H. Mo, J. A. Abdalla, R. A. Hawileh, and E. Ariyachandra, “Biomass ashes from agricultural wastes as supplementary cementitious materials or aggregate replacement in cement/geopolymer concrete: A comprehensive review,” J. Build. Eng., vol. 40, no. July 2020, p. 102332, 2021.doi: doi: 10.1016/j.jobe.2021.102332.

[37] A. S. Ruviaro et al., “Characterization and investigation of the use of oat husk ash as supplementary cementitious material as partial replacement of Portland cement: Analysis of fresh and hardened properties and environmental assessment,” Constr. Build. Mater., vol. 363, no. September 2022, p. 129762, 2023.doi: 10.1016/j.conbuildmat.2022.129762.
Published
2023-07-11
How to Cite
Cossio-Mena, C., Williams-Urango, E., Palacios-Mosquera, D., & Arbelaez-Perez, O. (2023). Coconut shell ash as a substitute for cement: effect of calcination temperature. ITECKNE, 20(2). https://doi.org/https://doi.org/10.15332/iteckne.v20i2.3006
Section
Accepted for Publication