Mechanical and thermal properties of concrete containing shredded and pelletized plastic wastes

Keywords: Pelletized plastic, Polyethylene terephthalate, Shredded plastic, Thermal conductivity, Thermal properties


The non-biodegradable character of plastic wastes has a negative effect on the environment. The valorization of plastic in the production of concrete with lower thermal conductivity may contribute to decreasing the energy consumed to maintain indoor thermal comfort in buildings. The present study reports the preparation of mixes and cylindrical specimens of concrete with shredded and pelletized plastic wastes as replacements (1.7%, 3.4%, and 5%) for fine aggregates. Density, compressive strength, and thermal conductivity were measured. The experimental results demonstrated a decrease in density and thermal conductivity with increasing quantity of shredded and pelletized plastic wastes. Additionally, shredded plastic wastes have a negative effect by decreasing compressive strength. Concrete with 3.4% pelletized plastic presents the highest compressive strength. The incorporation of pelletized plastic improves the mechanical and thermal properties of modified concrete.


Download data is not yet available.

Author Biographies

Víctor Manuel Blanchar-Amaya, Universidad Cooperativa de Colombia

Universidad Cooperativa de Colombia. Bogotá, Colombia

Everyn Marcela Villalba-Manjarres, Universidad Cooperativa de Colombia

Universidad cooperativa de Colombia, Bogotá, Colombia

Sergio Andrés Monsalve-Romero, Universidad Cooperativa de Colombia

Estudiante de Ingeniería Civil, Universidad cooperativa de Colombia, Bogotá, Colombia

Oscar Felipe Arbelaez-Perez, Universidad Cooperativa de Colombia

Universidad cooperativa de Colombia, Bogotá, Colombia


[1] Z. C. Steyn, A. J. Babafemi, H. Fataar, and R. Combrinck, “Concrete containing waste recycled glass, plastic and rubber as sand replacement,” Construction and Building Materials, vol. 269, pp. 121242, 2021, DOI: 10.1016/j.conbuildmat.2020.121242.

[2] H. M. Hamada et al., “Sustainable use of palm oil fuel ash as a supplementary cementitious material: A comprehensive review,” Journal of Building Engineering, vol. 40, pp. 102286, 2021, DOI: 10.1016/j.jobe.2021.102286.

[3] J. Chai and J. Fan, “Advanced thermal regulating materials and systems for energy saving and thermal comfort in buildings,” Materials Today Energy, vol. 24, pp. 100925, 2022, DOI: 10.1016/j.mtener.2021.100925.

[4] G. Thakur, M. Asalam, and M. El Ganaoui, “Energy efficient building envelope using waste PET in concrete,” MATEC Web of Conferences, vol. 307, pp. 01022, 2020, DOI: 10.1051/matecconf/202030701022.

[5] P. Shafigh, I. Asadi, and N. B. Mahyuddin, “Concrete as a thermal mass material for building applications - A review,” Journal of Building Engineering., vol. 19, pp. 14–25, 2018, DOI: 10.1016/j.jobe.2018.04.021.

[6] A. Karaki, M. Mohammad, E. Masad, and M. Khraisheh, “Case Studies in Thermal Engineering Theoretical and computational modeling of thermal properties of lightweight concrete,” Case Studies in Thermal Engineering., vol. 28, pp. 101683, 2021, DOI: 10.1016/j.csite.2021.101683.

[7] Z. Misri, M. H. W. Ibrahim, A. S. M. A. Awal, M. S. M. Desa, and N. S. Ghadzali, “Review on factors influencing thermal conductivity of concrete incorporating various type of waste materials,” IOP Conference Series: Earth and Environmental Science, vol. 140 (1), pp. 012141, 2018, DOI: 10.1088/1755-1315/140/1/012141.

[8] I. Asadi, P. Shafigh, Z. F. Bin, A. Hassan, and N. B. Mahyuddin, “Thermal conductivity of concrete- A review”, vol. 20, pp. 81-93, Journal of Building Engineering, 2018, DOI: 10.1016/j.jobe.2018.07.002.

[9] Z. Liu, X. Yuan, Y. Zhao, J. Wei, and H. Wang, “Concrete waste-derived aggregate for concrete manufacture,” Journal of Cleaner Production, vol. 338, pp. 130637, 2022, DOI: 10.1016/j.jclepro.2022.130637.

[10] Association of plastic manufactures, “Plastics - the Facts 2020”, [online], available:, [accesed: Feb. 17, 2022].

[11] J. Huang, A. Veksha, W. Ping, A. Giannis, and G. Lisak, “Chemical recycling of plastic waste for sustainable material management : A prospective review on catalysts and processes,” Renewable. Sustainable Energy Review, vol. 154, pp. 111866, 2022, DOI: 10.1016/j.rser.2021.111866.

[12] L. Gu and T. Ozbakkaloglu, “Use of recycled plastics in concrete: A critical review,” Waste Management., vol. 51, pp. 19–42, 2016, doi: 10.1016/j.wasman.2016.03.005.

[13] C. N. Ngandu, “Compressive strength prediction for glass aggregates incorporated concrete, using neural network and reviews,” Iteckne, vol. 19 (2), pp. 61–68, 2022, DOI: 10.15332/iteckne.v19i2.2769.

[14] B. Abu-jdayil, A. Mourad, W. Hittini, M. Hassan, and S. Hameedi, “Traditional , state-of-the-art and renewable thermal building insulation materials: An overview,” Construction and Building Materials, vol. 214, pp. 709–735, 2019, DOI: 10.1016/j.conbuildmat.2019.04.102.

[15] C. Xue, M. Yu, H. Xu, L. Xu, M. Saafi, and J. Ye, “Experimental study on thermal performance of ultra-high performance concrete with coarse aggregates at high temperature,” Construction and Building Materials, vol. 314, pp. 125585, 2022, DOI: 10.1016/j.conbuildmat.2021.125585.

[16] A. A. Sayadi, J. V Tapia, T. R. Neitzert, and G. C. Clifton, “Effects of expanded polystyrene ( EPS ) particles on fire resistance , thermal conductivity and compressive strength of foamed concrete,” Construction and Building Materials, vol. 112, pp. 716–724, 2016, DOI: 10.1016/j.conbuildmat.2016.02.218.

[17] Y. Xu, L. Jiang, J. Liu, Y. Zhang, J. Xu, and G. He, “Experimental study and modeling on effective thermal conductivity of EPS lightweight concrete,” vol. 11 (2), pp. 1–13, 2016, DOI: 10.1299/jtst.2016jtst0023.

[18] R. Demirboga and A. Kan, “Thermal conductivity and shrinkage properties of modified waste polystyrene aggregate concretes,” Construction and Building Materials, vol. 35, pp. 730–734, 2012, DOI: 10.1016/j.conbuildmat.2012.04.105.

[19] A. Dixit, S. D. Pang, S. H. Kang, and J. Moon, “Lightweight structural cement composites with expanded polystyrene (EPS) for enhanced thermal insulation,” Cement and Concrete Composites., vol. 102, pp. 185–197, 2019, DOI: 10.1016/j.cemconcomp.2019.04.023.

[20] S. I. Basha, M. R. Ali, S. U. Al-Dulaijan, and M. Maslehuddin, “Mechanical and thermal properties of lightweight recycled plastic aggregate concrete,” Journal of Building Engineering., pp. 101710, 2020, DOI: 10.1016/j.jobe.2020.101710.

[21] M. Belmokaddem, A. Mahi, Y. Senhadji, and B. Y. Pekmezci, “Mechanical and physical properties and morphology of concrete containing plastic waste as aggregate,” Construction and Building Materials, vol. 257, pp. 119559, 2020, DOI: 10.1016/j.conbuildmat.2020.119559.

[22] O. F. Arbelaez-Perez, J. F. Venites-Mosquera, Y. M. Córdoba-Palacios, and K. P. Mena-Ramírez, “Propiedades mecánicas de concretos modificados con plástico marino reciclado en reemplazo de los agregados finos,” Revista. Politécnica, vol. 16 (31), pp. 77–84, 2020, DOI: 10.33571/rpolitec.v16n31a6.

[23] F. K. Alqahtani, G. Ghataora, M. I. Khan, and S. Dirar, “Novel lightweight concrete containing manufactured plastic aggregate,” Journal of Building Engineering, vol. 148, pp. 386–397, 2017, DOI: 10.1016/j.conbuildmat.2017.05.011.

[24] M. E. Kangavar, W. Lokuge, A. Manalo, W. Karunasena, and M. Frigione, “Investigation on the properties of concrete with recycled polyethylene terephthalate (PET) granules as fine aggregate replacement,” Case Studies in Construction Materials., vol. 16, pp. e00934, 2022, DOI: 10.1016/j.cscm.2022.e00934.

[25] Instituto Colombiano de Normas Técnicas y Certificación, “NTC 550. Elaboracion y Curado de Especimenes de Concreto para Ensayos de Laboratorio,” [online], available: [accesed: Dec. 15, 2021]

[26] V. G. Ajey Kumar, M. Karthik, and M. Keshava, “Production of recycled plastic coarse aggregates and its utilization in concrete,” International Journal of Emerging Trends in Engineering Research., vol. 8 (8) pp. 4118–4122, 2020, DOI: 10.30534/ijeter/2020/14882020.

[27] O. Y. Marzouk, R. M. Dheilly, and M. Queneudec, “Valorization of post-consumer waste plastic in cementitious concrete composites”, Waste Management, vol. 27 (2), pp. 310–318, 2007, DOI: 10.1016/j.wasman.2006.03.012.

[28] L. Pezzi, P. De Luca, D. Vuono, F. Chiappetta, and A. Nastro, “Concrete products with waste’s plastic material (bottle, glass, plate),” Materials Science Forum, vol. 516, pp. 1753–1758, 2006, DOI: 10.4028/

[29] M. Gesoglu, E. Güneyisi, O. Hansu, S. Etli, and M. Alhassan, “Mechanical and fracture characteristics of self-compacting concretes containing different percentage of plastic waste powder,” Construction and Building Materials, vol. 140, pp. 562–569, 2017, DOI: 10.1016/j.conbuildmat.2017.02.139.

[30] X. Li, T. Ling, and K. Hung, “Functions and impacts of plastic / rubber wastes as eco-friendly aggregate in concrete – A review,” Construction and Building Materials, vol. 240, p. 117869, 2020, DOI: 10.1016/j.conbuildmat.2019.117869.

[31] I. Rahmouni, G. Promis, A. R’mili, H. Beji, and O. Limam, “Effect of carbonated aggregates on the mechanical properties and thermal conductivity of eco-concrete,” Construction and Building Materials, vol. 197, pp. 241–250, 2019, DOI: 10.1016/j.conbuildmat.2018.11.210.

[32] M. A. Al-osta, A. S. Al-tamimi, S. M. Al-tarbi, O. S. B. Al-amoudi, W. A. Al-awsh, and T. A. Saleh, “Development of sustainable concrete using recycled high-density polyethylene and crumb tires : Mechanical and thermal properties,” Journal of Building Engineering, vol. 45, pp. 103399, 2022, DOI: 10.1016/j.jobe.2021.103399.

[33] A. Boucedra, M. Bederina, and Y. Ghernouti, “Study of the acoustical and thermo-mechanical properties of dune and river sand concretes containing recycled plastic aggregates,” Construction and Building Materials, vol. 256, pp. 119447, 2020, DOI: 10.1016/j.conbuildmat.2020.119447.
How to Cite
Blanchar-Amaya, V., Villalba-Manjarres, E., Monsalve-Romero, S., & Arbelaez-Perez, O. (2022). Mechanical and thermal properties of concrete containing shredded and pelletized plastic wastes. ITECKNE, 19(2).
Accepted for Publication