Performance analysis of the IEEE802.11 for the connectivity in rural zones in Colombia

  • Óscar Gualdrón González Universidad Industrial de Santander (UIS)
  • Ricardo Andrés Díaz Suárez Universidad Cooperativa de Colombia (UCC)
Keywords: IEEE802.11, Long distance, Physics, MAC, Model, Throughput, Iperf

Abstract

In this paper, we present the performance characteristics of IEEE802.11 standard in point to point reaching over rural sites in Colombia. To explain this performance is first should be carried out a detailed description of the behavior of the physical and MAC layer in the deployment of long-range networks, this is done by analyzing the existing regulation for maximum equivalent isotropic radiated power in the ISM band, the propagation losses, the reception level of commercial Wi-Fi radios, the frame error rate and considering the parameters DIFS, and ACKTimeout SLOTTIME that are part of medium access control affect the implementation of radio links of several kilometers. Following from this theoretical models in the literature and one proposed by the authors calculate the saturated throughput UDP unidirectional and bidirectional function of the distance considering the different transmission speeds; After a couple of prototype autonomous Wi-Fi communication photovoltaic powered laboratory designed and built, a group performed experimental measurements of saturated UDP throughput in point to point links between Bucaramanga and rural sites surrounding metropolitan area in the range of 0-10.4 km distances, measurements are performed using the iperf traffic generator sending UDP packets of unidirectional and bidirectional, then the measurements are compared with those obtained theoretically.

Downloads

Download data is not yet available.

Author Biographies

Óscar Gualdrón González, Universidad Industrial de Santander (UIS)

Ph. D en Física, Université Laval Canada. Docente Tiempo Completo, Director Grupo CPS, Universidad Industrial de Santander UIS, Bucaramanga, Colombia

Ricardo Andrés Díaz Suárez, Universidad Cooperativa de Colombia (UCC)

MIE en Ingeniería electrónica, Universidad Industrial de Santander. Docente Medio Tiempo, Investigador Grupo GITI, Universidad Cooperativa de Colombia UCC, Bucaramanga, Colombia

References

[1] G. Hernán. Wireless networks and rural development: Opportunities for Latin America. Information technologies and international development, Vol 2, No. 3, pp. 47-56, Spring, Boston: The Massachusetts Institute of technologies, 2005.

[2] C. Luis, Q. River, C. César, L. Liñán. Wild: Wifi based Long Distance. Lima, Pontificia Universidad Católica del Perú, 2009, 180 p.

[3] S, Surana, Designing Sustainable Rural Wireless Networks for Developing Regions, Trabajo de grado (PhD filosofía en ciencia de la computación), Universidad de California, Berkeley ,2009.

[4] A. Gerson, C. Luis, C. David, C. César, E. David, H. Renato, L. Leopoldo, M. Jesús, M. Andrés, M. Eva Juliana, OSUNA Pablo, CHECO Yuri Pa-, PACO Juan, QUIJANDRIA Yvanna, QUISPE River, REY Carlos, SALMERÓN Sandra, SÁNCHEZ Arnau, SANONI, Paola, SEOANE Joaquín, SIMÓ, Javier y VERA Jaime. Redes inalámbricas para zonas rurales, Lima, Pontificia Universidad Católica del Perú Enero 2008, 252 p.

[5] M. Afanasyev, T. Chen, G. M. Voelker, and A. C. Snoeren, “Usage Patterns in an Urban WiFi Network,” IEEE/ACM Transactions of Networking, vol. 18, No.5, pp.1359-1372, October 2010.

[6] S. F. Javier, Modelado y Optimización de IEEE802.11 para su Aplicación en el Despliegue de Redes Extensas en Zonas rurales aisladas de Países en Desarrollo. Trabajo de grado (Doctor en ingeniería de telecomunicación). Universidad Politécnica Superior, Escuela superior de ingenieros de telecomunicación, Departamento de Ingeniería y Sistemas Telemáticos 2007.

[7] E. M. María, Guía para el Diseño e implementación de redes inalámbricas en entornos rurales de Perú, Trabajo de grado (Ingeniero de Telecomunicaciones), Escuela Politécnica Superior, Universidad Autónoma de Madrid, 2010.

[8] P. B, Germán, Guía de tecnologías de conectividad para acceso en áreas rurales. Unión internacional de telecomunicaciones, Oficina de desarrollo de las telecomunicaciones, 2007, 84p.

[9] T, Daniele, G, Alessandro Stefanelli, Riccardo, F. Benedetta, C. Fluvio, Reliability and scalability analysis of Low cost long distance IP-Based wireless networks, innovations for digital inclusion ITU-T Kaleidoscope event, Mar del Plata, 2009.

[10] T. Daniele, G. Alessandro, Stefanelli, Riccardo, F. Benedetta, V. Piergiorgi, Performance of Low Cost Radios in the Implementation of Long Distance Wireless Links, iXem Labs, Politecnico di Torino, Italy, 2008.

[11] T. Daniele, G. Alessandro Stefanelli, Riccardo, F, Benedetta, C. Fluvio, An independent, Low Cost and Open Source Solution for the realization of wireless links over huge multikilometric Distance, p.495-498, IEEE Radio and Wireless Symposium, 2008.

[12] K. P., Rabin. Multi-Tier Network Architecture for Long Distance Rural Wireless Networks in Developing Regions. California, 2009, Trabajo de grado (Ph.D. en filosofía en ciencias de las computación). University of California at Berkeley, Electrical Engineering and Computer Science.

[13] S. Anmol, N. Sergiu, P. Rabin, S. Sonesh, BREWER, Eric, S. Lakshminarayanan. Packet Loss Characterization in WiFi-based Long Distance Networks, Universidad de California Berkeley, Universidad de Colorado, Universidad de Nueva York, IEEE INFOCOM, 2007, pp 312-320.

[14] R. A. Andrade, P. H Salas, D. S. Paredes, “Tecnología Wi-Fi”, Argentina, 2008 pp. 1–116.

[15] I. 802.11-2007, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Rev. 2007, technical report, IEEE CS, 2007.

[16] Excerpts from FCC Rules part 15 relative to “Unlicensed Spread Spectrum radio systems” believed to be current as of July 23, 1996.

[17] P. Caleb, S. Douglas, G. Dirk, The Stability of The Longley-Rice Irregular Terrain Model for Typical Problems, University of Colorado at Boulder, 2011.

[18] G. A. Hufford, A. G. Longley, W. A. Kissick, “A guide to use of the ITS irregular terrain model in the area prediction mode,” U.S. Dep. Commerce, Boulder, CO, NTIA Rep. 82-100, Apr. 1982.

[19] T. S. Rappaport, Wireless Communications Principles and Practice, 2th. Ed., Prentice Hall, New Jersey, pp. 70-71, 2002.

[20] Fabricante de Radios Wi-Fi IEEE802.11 Ubiquity Networks, (online), citado en abril 2011, Disponible en: .

[21] F. J. Simo Reigadas, A. Martínez Fernández, F. J. Ramos-López, J. Seoane-Pascual, Modeling and Optimizing IEEE 802.11 DCF for Long-Distance Links”, IEEE Transactions on Mobile Computing, p. 15, Vol. 9, No. 6, 2010.

[22] K. Chebrolu, B. Raman, S. Sen. Long-Distance 802.11b Links: Performance Measurements and Experience. In ACMMOBICOM, 2006.

[23] D . Aguayo, J. Bicket, S. Biswas, G. Judd, and Robert M. Link-level Measurements from an 802.11b Mesh Network. In SIGCOMM, Aug 2004.

[24] P. Barsocchi, G. Oligeri y F. Potorti. Frame error model in rural Wi-Fi networks. IEEE Transactions on wireless communications, Marzo 2009.

[25] P. Guangyu and T. Henderson, Validation of ns-3 802.11b PHY model. Boeing Research and Technology, The Boeing Company, MAY 2009.

[26] M. B. Pursley, Fellow, IEEE, and T. C. Royster IV, Properties and Performance of the IEEE 802.11b Complementary-Code-Key Signal Sets, IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 2, FEBRUARY 2009.

[27] M. Kwiatkowska, G. Norman and J. Sproston. Probabilistic Model Checking of the IEEE 802.11 Wireless Local Area Network Protocol. In H. Hermanns and R. Segala (editors) Proc. PAPM/PROBMIV’02, volume 2399 of Lecture Notes in Computer Science, pages 169-187, Springer. July 2002.

[28] N. Sandra Salmerón, Parametrización de IEEE 802.11e EDCA para la priorización del tráfico VoIP en redes extensas para zonas rurales de países en vías de desarrollo, Madrid, trabajo de grado Máster, Universidad Rey Juan Carlos, ETSI de Telecomunicación, 2007.

[29] W. Grote, C. Ávila y A. Molina. Análisis de máximo desempeño para un WLAN operando a tasas fijas o adaptativas usando el estándar IEEE802.11a/b/g. Ingeniare. Rev. chil. ing. 2007, Vol.15, No.3, pp. 320-327.

[30] S. Delgadillo, D. Guzmán, A. Muller y W. Grote. Análisis experimental de un ambiente Wi-Fi multicelda. Rev. Fac. Ing. - Univ. Tarapacá [online]. 2005, Vol.13, No.3, pp. 45-52. ISSN 0718-1337.

[31] P. Rabin, N. Sergiu, S. Sonesh, S. Anmol, S. Lakshminarayanan, Eric. Brewer. WiLDNet: Design and Implementation of High Performance WiFi Based Long Distance Networks, TIER Group, Universidad de California Berkeley, Universidad de Colorado, Universidad de Nueva York, Boulder, 2007.

[32 G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function,” IEEE J. Selected Areas in Comm, Vol. 18, No. 3, pp. 535-547, Mar. 2000.

[33] G. Bianchi and I. Tinnirello, “Remarks on IEEE 802.11 DCF Performance Analysis,” IEEE Comm. Letters, vol. 9, no. 8, pp. 765-767, Aug. 2005.

[34] M. Kwiatkowska, G. Norman and J. Sproston. Proba - bilistic Model Checking of the IEEE 802.11 Wireless Local Area Network Protocol. In H. Hermanns and R. Segala (editors) Proc. PAPM/PROBMIV’02, Vol. 2399 of Lecture Notes in Computer Science, pages 169- 187, Springer. July 2002.

[35] D. K. Puthal y B. Sahoo, A Finite State Model for IEEE 802.11 Wireless LAN MAC DCF, Emerging Trends in En - gineering & Technology, International Conference on, pp. 258-263, First International Conference on Emer - ging Trends in Engineering and Technology, 2008.

[36] R. P. Keith, G. Jared,How to Guide on JPerf and IPerf, Wireless LAN profesionals 2011.
Published
2012-07-01
How to Cite
Gualdrón González, Óscar, & Díaz Suárez, R. (2012). Performance analysis of the IEEE802.11 for the connectivity in rural zones in Colombia. ITECKNE, 9(2), 7-21. https://doi.org/https://doi.org/10.15332/iteckne.v9i2.2753
Section
Research and Innovation Articles