Production and use of biomass pellets for generating thermal energy: a review of the models of the gasification models

  • Carlos Andrés Forero Núñez Universidad Nacional de Colombia
  • Carlos Alberto Guerrero Fajardo Universidad Nacional de Colombia
  • Fabio Emiro Sierra Vargas Universidad Nacional de Colombia
Keywords: Biomass, Renewable energies, Gasification, Pellets, Pyrolysis

Abstract

The need for producing thermal energy and electricity, the global warming caused by the increase of Green House Gas emissions, the raising of fossil fuels prices and the desire of energy independence, have created a new industry interested on generating energy by using renewable sources. Among different options, biomass is one of the most used elements to produce electricity, coming on third place worldwide behind hydropower and solar power, but is the most used to produce thermal energy. Problems related with low biomass density, transport and storage are the main reasons why it is so important to develop products with higher density, resistance and durability;thus, these products are called pellets and briquettes. This work aims to analyze the actual situation of pellets’ production, their uses but especially to summarize different models developedfor gasification processes.

Downloads

Download data is not yet available.

Author Biographies

Carlos Andrés Forero Núñez, Universidad Nacional de Colombia

PhD. (c) Ingeniería Ciencia y tecnología de los materiales, Universidad Nacional de Colombia. Investigador Grupo Mecanismos de Desarrollo Limpio y Gestión Energética, Universidad Nacional de Colombia, Bogotá, Colombia

Carlos Alberto Guerrero Fajardo, Universidad Nacional de Colombia

PhD. en Ingeniería Química, Universidad Nacional de Colombia. Profesor Asociado dedicación exclusiva, Director Grupo Aprovechamiento Energético de Recursos Naturales, Universidad Nacional de Colombia, Bogotá, Colombia

Fabio Emiro Sierra Vargas, Universidad Nacional de Colombia

PhD. en Ingeniería, Universidad de Kassel Alemania. Profesor Asociado, Director Grupo Mecanismos de Desarrollo Limpio y Gestión Energética, Universidad Nacional de Colombia, Bogotá, Colombia

References

[1] IEA, CO2 emissions from fuel combustion Highlight, 2011.

[2] REN21, Renewables 2011 Global Status Report, 2011.

[3] E. Comission,Renewable Energy Technologies en: Long Term Research in the 6th Framework Programme, 2007.

[4] N. Lior, Sustainable neregy development: The present (2009) situation and possible paths to the future, Energy, 35 (2010) 3976-3994.

[5] F.S. Vargas, C. Guerrero, J. Arango, Tecnologías para el aprovechamiento de los Biocombustibles, Universidad Nacional de Colombia, Bogotá, 2008.

[6] J.G. Speight, Synthetic Fuels Handbook. Properties, process and performance, McGraw Hill, 2008.

[7] M. Parikka, Global biomass fuel resources, Biomass and Bioenergy, 27 (2004) 613-620.

[8] UPME, Análisis y revisión de los objetivos de política energética colombiana de largo plazo y actualización de sus estrategias de desarrollos, 2010.

[9] C. Highman, M.v.d. Burgt, Gasification, Elsevier, 2003.

[10] C.A. Forero, G. Díaz, L.C. Hernández, J.N. Arroyo, F.S. Vargas, Solid Biofuels production from Timber, Coconut and Oil Palm residues bypressing at Universidad Nacional de Colombia, en: The third international environmental best practices conference, Hochschule Offenburg, Offenburg, 2011, pp. 84.

[11] N. Kaliyan, R.V. Morey, Densification of Biomass: Mechanisms, Models and experiments on Briquetting and Pelleting of Biomass, Saarbrücken, Germany, 2008.

[12] I. Obernberger, G. Thek, Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour, Biomass and Bioenergy, 27 (2004) 653-669.

[13] M. Peksa-Blanchard, P. Dolzan, A. Grassi, J. Heinimo, M. Junginger, T. Ranta, A. Walter, Global Wood Pellets Markets and Industry: Policy drivers, market status and raw material potential, IEA Bioenergy, 2007.

[14] Pelletsa@las, English Handbook for wood pellet combustion, 2009.

[15] J. Vinterbäck, Pellets 2002: the first world conference of pellets, Biomass and Bioenergy, 27 (2004) 513-520.

[16] M. Cocchi,Global wood pellet industry Market and Trade study, IEA Bioenergy, 2011.

[17] G.D. Giacomo, L. Taglieri, Renewable energy benefits with conversion of woody residues to pellets, Energy, 34 (2009) 724-731.

[18] K. Mahapatra, L. Gustavsson, R. Madlener, Bioenergy Innovations: The case of wood pellet system in Sweden, Technology Analysis & Strategic Management, 19 (2007) 99-125.

[19] M. Selkimäki, B. Mola-Yudego, D. Röser, R. Prinz, L. Sikanen,Present and future trends in pellets markets, raw materials and supply logistics in Sweden and Finland, Renewable and Sustainable Energy Reviews, 14 (2010) 3068-3075.

[20] H. Lund, The implementation of renewable energy systems. Lessons learned from the Danish case, Energy, 35 (2010) 4003-4009.

[21] M. Stähl, K. Granström, J. Berghel, R. Renström, Industrial processes for biomass drying and their effects on the quality properties of wood pellets, Biomass and Bioenergy, 27 (2004) 621-628.

[22] M. Stähl, J. Berghel, Validation of a mathematical model by studying the effects of recirculation of drying gases, Drying Technology, 26 (2008) 786-792.

[23] Monsanto Chemical Company, Method of Making Pellets,patente US 2436766, Estados Unidos, 1948.

[24] Waste technology transfer Inc, Pelletizing and briquetting of combustible organic-waste materials using binders produced by liquefaction of biomass, patente US 6506223 B2, Estados Unidos, 2003.

[25] Georgia Pacific Corporation, Pelletizing wood, patente US 4612017, Estados Unidos, 1986.

[26] P. Lethikangas, Quality properties of pelletised sawdust, logging residues and bark, Biomass and Bioenergy, 20 (2001) 351-360.

[27] N. Kaliyan, M.R. Vance, Factors affecting stregth and durability of densified biomass products, Biomass and Bioenergy, 33 (2009) 337-359.

[28] N. Kaliyan, R.V. Morey, Constitutive model for densification of corn stoer and switchgrass, Biosystems engineering, 104 (2009) 47 - 63.

[29] P. Adapa, L.T.G. Schoenau, Compression characteristics of selected ground agricultural biomass, en Agricultural Engineering International: The CIGR Ejournal, Manuscript 1347, 2009.

[30] C.A. Forero, E.G. Agular, A. Cediel, F.E. Sierra, Evaluación de los modelos de densificación para combustibles sólidos a partir de mezclas aserrín y carbón mineral a bajas presiones, en: VII Jornada Internacional Ciencia Tecnología y Sociedad, Universidad Cooperativa de Colombia, Bogotá Colombia, 2011, pp. 40 - 55.

[31] L. Shang, N. Nielsen, J. Dahl, W. Stelte, Quality effects caused by torrefaction of pellets made from Scots pine, Fuel Processing Technology, 101 (2012), 23-38.

[32] Pelletsa@las, Final report on producers, traders and consumers of wood pellets, 2009.

[33] S. Voulgarakai, A. Balafoutis, G. Papadakis, Development and promotion of a transparent European pellets market: creation of a European real-time pellets atlas. 2009

[34] C. Gilbe, M. Öhman, E. Lindström, D. Boström, R. Backman, S. Robert, J. Burvall, Slagging characteristics during residential combustion of biomass pellets, Energy & Fuels, 22 (2008) 3536- 3543.

[35] M. Olsson, J. Kjällstrand, Emissions from burning of softwood pellets, Biomass and Bioenergy, 27 (2004) 607-611.

[36] H. Wiinika, R. Gebart, The influence of fuel type on particle emissions in combustion of biomass pellets, Combustion Science and Technology, 177 (2010) 741-763.

[37] K. Gröransson, U. Söderlind, J. He, W. Zhang, Review of syngas production via biomass DFBGs, Renewable and Sustainable Energy Reviews, 15 (2010) 482-492.

[38] H. Thunman, F. Niklasson, F. Johnsson, B. Leckner, Composition of volatile gases and thermo chemical properties of wood for modeling of fixed or fluidized beds, Energy & Fuels, 15 (2001) 1488 - 1497.

[39] M. Olsson, J. Kjällstrand, G. Petersson, Specific chimney emissions and biofuel characteristics of softwood pellets for residential heating in Sweden, Biomass and Bioenergy, 24 (2003) 51 - 57.

[40] J. Rath, G. Staudinger,Cracking reactions of tar from pyrolysis of spruce wood, Fuel, 80 (2001) 1379-1389.

[41] C. Erlich, E. Björnbom, D. Bolado, M. Giner, T.H. Fransson, Pyrolysis and gasification of pellets from sugar cane bagasse and wood, Fuel, 85 (2006) 1535-1540.

[42] S.S. Kim, J. Kim, Y.-H. Park, Y.-K. Park, Pyrolysis kinetics and decomposition characteristics of pine trees, Bioresource Technology, 101 (2010) 9797-9802.

[43] P. Wang, L. Jin, J. Liu, S. Zhu, H. Hu, Analysis of coal tar derived from pyrolysis at different atmospheres, Fuel, In Press (2010).

[44] S.M. Andresen, S.T. Pedersen, B. Gobel, N. Houbak, U. Henriksen, Pyrolysis of thermally thick wood particles- experiments and mathematical modelling,en: Proceedings of ECOS 2005, Trondheim Norway, 2005.

[45] M.G. Gronli, M.C. Melaaen, Mathematical model for wood pyrolysis- Comparison of experimental measurements with model predictions, Energy & Fuels, 14 (2000) 791-800.

[46] K.M. Bryden, K.W. Ragland, Numerical modeling of a deep, fixed bed combustor, Energy & Fuels, 10 (1996) 269 - 275.

[47] M. Dogru, C.R. Howarth, G. Akay, B. Keskinler, A.A. Malik, Gasification of hazelnut shells in a downdraft gasifier, Energy, 27 (2002) 415-427.

[48] T.K. Kayal, M. Chakravarty, G.K. Biswas, Mathematical modelling of steady state updraft gasification of jute stick particles of definite sizes packed randomly - an analytical approach, Bioresource Technology, 60 (1997) 131 - 141.

[49] A. Melgar, J.F. Pérez, H. Laget, A. Horillo, Thermochemical equilibrium modelling of a gasficatying process, Energy Conversion and Management, 48 (2007) 59 - 67.

[50] X.T. Li, J.R. Grace, C.J. Lim, A.P. Watkinson, H.P. Chen, J.R. Kim, Biomass gasification in a circulating fluidized bed, Biomass and Bioenergy, 26 (2004) 171 - 193.

[51] C. Mandl, I. Obernberger, F. Biedermann, Modeling of an updraft fixed-bed gasifier operated with softwood pellets, Fuel, 89 (2010) 3795-3806.

[52] B.V. Babu, P.N. Sheth, Modeling and simulation of reduction zone dwondraft biomass gasifier: Effect of char reactivity factor, Energy Conversion and Management, 47 (2006) 2602 - 2611.

[53] M.L.d.S.-. Santos, Solid Fuels Combustion and Gasification. Modeling, Simulation and Equipment Operation, Marcel Dekker Inc, New York, 2004.

[54] P. Kaushal, J. Abedi, N. Mahinpey, A comprehensive mathematical model for biomass gasification in a bubbling fluidized bed reactor, Fuel, 89 (2010) 3650-3661.

[55] Z. Deng, R. Xiao, B. Jin, H. Huang, L. Shen, Q. Song, Q. Li, Computational fluid dynamics modeling of coal gasification in a pressurized spoutfluid bed, Energy & Fuels, 22 (2008) 1560-1569.

[56] Z.A.B.Z. Alauddin, P. Lahijani, M. Mohammadi, A.R. Mohamed, Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review, Renewable and Sustainable Energy Reviews, 14 (2010) 2852-2862.

[57] C. Erlich, T.H. Fransson, Downdraft gasification of pellets made of wood, palm-oil reisudues respective bagasse: Experimental study, Aplied Energy, 88 (2011) 899-908.

[58] W. Klose, M. Wölki, On the intrinsic reaction rate of biomass char gasification with carbon dioxide and steam, Fuel, 84 (2005) 885-892.

[59] J. Cooper, W.L.H. Halleth, A numerical model for packed-bed combustion of char particles, Chemical Engineering Science, 55 (2000) 4451 -4460.

[60] C.D. Blasi, G. Signorelli, G. Portoricco, Countercurrent fixed-bed gasification of Biomass at laboratory scale, Ind. Eng. Chem. Res., 38 (1999) 2571-2581.

[61] M.U. Ghani, P.T. Radulovic, S.L. Douglas, An improved model for fixed-bed coal combustion and gasification: sensitivity analysis and applications, Fuel, 75 (1996) 1213-1226.

[62] M. Puig-Arnavat, C.J. Bruno, A. Coronas, Review and analysis of biomass gasification models, Reneainable Energy Reviews, 14 (2010) 2841- 2851.
Published
2014-11-26
How to Cite
Forero Núñez, C., Guerrero Fajardo, C., & Sierra Vargas, F. (2014). Production and use of biomass pellets for generating thermal energy: a review of the models of the gasification models. ITECKNE, 9(1), 21-30. https://doi.org/https://doi.org/10.15332/iteckne.v9i1.2743
Section
Research and Innovation Articles