La marcha humana como fuente generadora de energía a pequeña escala: una revisión

  • Mónica Ayde Vallejo Velásquez Universidad Nacional de Colombia
  • Laura Carolina Galvis Martínez Universidad Nacional de Colombia
Keywords: Biomechanical energy, Human-powered, Harvesting energy, Piezoelectric device

Abstract

The study of alternative sources of electricity has grown dramatically worldwide and are an energy option for the electronic devices of low-power that require batteries to operate. Different types of energies present in the environment are being considered as energy solutions, and other sources, such as based on the human body show a promising future. Human body is an energy repository, every vital function or activity realized could be considered as a possible energy source. To walk is a physical activity which could be considered as a possible energy source harnessed to turn it into useful electrical power by using piezoelectric transducers as the most appropriate devices to be used on clothes and footwear. Through the mechanical piezoelectric deformation is generated an electric field as well as in the contrary situation. Settling the sole on a surface induces the necessary pressure to generate an electric field by using a piezoelectric as transduction device. This paper presents a compilation about the energy harvesting process from the human displacement from walking movement as an alternative source of electric energy through conversion into electrical power by electrical transduction device.

Downloads

Download data is not yet available.

Author Biographies

Mónica Ayde Vallejo Velásquez, Universidad Nacional de Colombia

MSc en Ingeniería, Universidad de Antioquia. Docente Tiempo Completo, Investigador Grupo GAUNAL, Universidad Nacional de Colombia Medellín, Colombia

Laura Carolina Galvis Martínez, Universidad Nacional de Colombia

Ingeniera de Control, Universidad Nacional de Colombia, Medellín, Colombia

References

[1] Mitcheson, P.D.; Yeatman, E.M.; Rao, G.K.; Holmes, A.S.; Green, T.C.; , “Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices,” Proceedings of the IEEE , vol.96, no.9, pp.1457-1486, Sept. 2008.

[2] Paradiso, J.A, “Systems for human-powered mobile computing,” Design Automation Conference, 2006 43rd ACM/IEEE , vol., no., pp.645-650.

[3] Penella, J. B, “Smart Materials for Microrobotic. Motion Control and Power Harvesting”. PhD Thesis. Universidad de Barcelona. 2005

[4] Sáez, M. L, “Energy Harvesting from Passive Human Power”, PhD Thesis. 2004.

[5] Paradiso, J.A.; Starner, T.; “Energy scavenging for mobile and wireless electronics,” Pervasive Computing, IEEE , vol.4, no.1, pp. 18- 27, Jan.-March 2005.

[6] Paulides, J.J.H., Jansen, J.W., Encica, L., Lomonova, E., Smit, M.”Human-powered small-scale generation system for a sustainable dance club”. Proceedings IEEE International Electric Machines and Drives Conference, 2009. IEMDC ‘09, 3-6 May 2009, Maimi, Florida. (pp. 439-444).

[7] T. Starner and J.A. Paradiso, Human generated power for mobile electronics. In: C. Piguet, Editor, Low power electronics design, CRS Press (2004).

[8] Rocha, J.G.; Goncalves, L.M.; Rocha, P.F.; Silva, M.P.; Lanceros-Méndez, S., “Energy Harvesting from Piezoelectric Materials Fully Integrated in Footwear,” Industrial Electronics, IEEE Transactions on, vol.57, no.3, pp.813-819, March 2010.

[9] Jansen, A.J.; Stevels, A.L.N.; , “Human power, a sustainable option for electronics,” Electronics and the Environment, 1999. ISEE -1999. Proceedings of the 1999 IEEE International Symposium on , vol., no., pp.215-218, 1999

[10] Gilmore. Human Power: Energy Recovery from Recreational Activity. Guelph Engineering Journal, (1), 8 - 16. ISSN: 1916-1107. ©2008.

[11] Starner, T.;, “Human-powered wearable computing,” IBM Systems Journal , vol.35, no.3.4, pp.618-629, 1996.

[12] Jansen, A.J.; Stevels, A.L.N.;, “Human power, a sustainable option for electronics,” Electronics and the Environment, 1999. ISEE -1999. Proceedings of the 1999 IEEE International Symposium on , vol., no., pp.215-218, 1999.

[13] Kendall, C.J., “Parasitic Power Collection in Shoe Mounted Devices,” BS Thesis, Department of Physics and Media Laboratory, Massachusetts Institute of Technology, June 1998

[14] Shenck, N.S.; Paradiso, J.A.;”Energy scavenging with shoe-mounted piezoelectrics,” Micro, IEEE , vol.21, no.3, pp.30-42, May/Jun 2001

[15] Garica, M., Ruina, A., Coleman, M., & Chatterjee, A “Passive-Dynamic models of human gait”. Proc. of the Engineering Foundation: Biomechanics and Neural Control of Movement, Mt. Sterling, Ohio, June, 1996.

[16] A. Karlsson and T. Persson, “The ankle strategy for postural controla comparison between a model-based and a marker-based method,” Computer Methods and Programs in Biomedicine, vol 52, no. 3, pp. 165-173, Mar. 1997.

[17] F. Moll, and A. Rubio, “An approach to the analysis of wearable body powered systems”, proceedings of the MIXDES 2000, June 2000.

[18] Kuo, A.; Maxwell Donelan, J.; Ruina, A.; Energetic Consequences of Walking Like an Inverted Pendulum: Step-to-Step Transitions. Exercise and Sport Sciences Reviews, 88-97. (2005).

[19] F.L. Buczek, K. M. Cooney, M. R. Walker, M. J. Rainbow, M. C.Concha and J. O. Sanders, “Performance of an inverted pendulum model directly applied to normal human gait,” Clinical Biomechanics, vol. 21, no. 3, pp. 288-296, Mar. 2006.

[20] Kuo A.D., (2007) “The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective”, Human Movement Science, pp. 617-656.

[21] Contreras Bravo L. E.; Roa Garzón M.A.; Modelamiento de la marcha humana por medio de gráficos de unión. Con-Ciencia; Tecnura. 26-42. 2005

[22] T. Komura, A. Nagano, H. Leung and Y. Shinagawa, “Simulating pathological gait using the enhanced linear inverted pendulum model,”IEEE Transactions on Biomedical Engineering, vol. 52, no. 9, pp. 1502 - 1513, Sept. 2005

[23] Zhe Tang; Meng Joo Er; Chien, C.-J.; , “Analysis of human gait using an Inverted Pendulum Model,” Fuzzy Systems, 2008. FUZZ-IEEE 2008. (IEEE World Congress on Computational Intelligence). IEEE International Conference on , vol., no., pp.1174-1178, 1-6 June 2008.

[24] Mateu L.; Moll F.; Review of Energy Harvesting Techniques and Applications for Microelectronics. Proceedings of the SPIE Microtechnologies for the New Millenium, 2005.

[25] Justin R. Farmer. A comparison of power harvesting techniques and related energy storage issues M.S Thesis. Dept. Mech. Eng., Virginia Polytechnic Institute and State Univ. Blacksburg, VA; 2007.

[26] Khaligh, A.; Peng Zeng; Cong Zheng; “Kinetic Energy Harvesting Using Piezoelectric and Electromagnetic Technologies—State of the Art,” Industrial Electronics, IEEE Transactions on , vol.57, no.3, pp.850-860, March 2010

[27] Kymissis, J.; Kendall, C.; Paradiso, J.; Gershenfeld, N.; , “Parasitic power harvesting in shoes,” Wearable Computers, 1998. Digest of Papers. Second International Symposium on , vol., no., pp.132-139, 19-20 Oct 1998.

[28] Liang, J.; Liao, W.; “Energy Harvesting and Dissipation with Piezoelectric Materials. IEEE International Conference on Information and Automation”, 446-451. (2008).

[29] Sodano, H. A.; Parkb, G.; Inmana, D. J.;” Review of Power Harvesting Advances and Applications”. Proceedings of the 22st annual International Modal Analysis Conference, 11. (2004).

[30] J. Yang, Z. Chen, and Y. Hu, “An exact analysis of a rectangular plate piezoelectric generator,” IEEE Trans. Ultrason., Ferroelectr., Freq.Control, vol. 54, no. 1, pp. 190–195, Jan. 2000

[31] Cupich Rodríguez, M., & Elizondo Garza, F. J. “Actuadores Piezoeléctricos”. En. Ingenierias Vol III , 22-28. (2000).

[32] González, J. L., Rubio & Moll. “Human Powered Piezoelectric Batteries to Supply Power to Wearable Electric Devices”. International journal of the Society of Materials Engineering for Resources, 34-40.(2002).

[33] Sodano, H. A., Parkb, G., & Inmana, D. J.’ A Review of Power Harvesting from Vibration using Piezoelectric Materials. The Shock and Vibration Digest”, 197-205. (2004).

[34] J.G. Rocha, L.M. Goncalves, P.F. Rocha, M.P. Silva and S. Lanceros-Méndez, Energy harvesting from piezoelectric materials fully integrated in footwear, IEEE Transactions on Industrial Electronics 57 (3) (2010), pp. 813–819

[35] J.C. Moreno, J.F. Fernández, P. Ochoa, R.Ceres, L. Calderón, E. RocOn, J.L. Pons, “Aplicación de sensores piezoeléctricos cerámicos a la caracterización biomecánica”. Boletín de la Sociedad Española de Cerámica y Vidrio, ISSN 0366-3175, Vol. 43, Nº. 3, 2004
Published
2013-10-24
How to Cite
Vallejo Velásquez, M., & Galvis Martínez, L. (2013). La marcha humana como fuente generadora de energía a pequeña escala: una revisión. ITECKNE, 7(2), 184-190. https://doi.org/https://doi.org/10.15332/iteckne.v7i2.2723
Section
Research and Innovation Articles