Controlled release of Metoprolol Succinate from the organo-mineral complex Metoprolol Succinate-Montmorillonite

Keywords: Metoprolol Succinate, Controlled release system, Aluminosilicates, Kinetic models, Montmorillonite

Abstract

Due to the current need to prolong the action of a drug and reduce the side effects that can be generated in the patient, a large number of scientific investigations have been developed that focus on the implementation of systems that cover the needs set out above, giving origin thus to controlled release systems.

Therefore, the synthesis of the Metoprolol Succinate (MPS) -montmorillonite (MMT) complex was carried out at pH 8, where the presence of the drug in the interlaminar space of the aluminosilicate was determined by XRD of polycrystalline samples, and different complementary analytical techniques (Uv- Vis, FTIR and SEM), obtaining as a result that the MPS was introduced into the montmorillonite due to the interactions of hydrogen bonds and ion-dipole, in addition a percentage of encapsulation efficiency of 60% was achieved.

Finally, for the kinetics of drug release in vitro the model that best adapted to the data obtained from the release in simulated gastric fluid (SGF) was the Korsmeyer-Peppas model and for simulated intestinal fluid (SIF) was the first order.

Downloads

Download data is not yet available.

Author Biographies

Laura Marcela Pérez Niño, Universidad Industrial de Santander

Universidad Industrial de Santander, Sede Bucaramanga, Escuela de Química, Grupo de Investigación en bioquímica y microbiología GIBIM, 680002 Bucaramanga, Colombia.

Angelica María Candela Soto, Universidad Santo Tomás

Universidad Santo Tomás, Sede Bucaramanga, Facultad de Química Ambiental, Grupo de Investigación en Nuevos Materiales y Energías Alternativas GIMNEA, Carrera 27 # 180–395, Floridablanca, Colombia.

Hernando Alberto Camargo García, Servicio Geológico Colombiano

Servicio Geológico Colombiano, Grupo de investigación de materiales de interés geológico y geotécnico, 111321 Bogotá, Colombia

References

1. J. Weser, Drug therapy: Metoprolol, The New England journal of medicine, 301(13), 698-703 (1979).

2. C. Krishna, S. Beeravelli, J. Medikonda, J. Subrahmanyam, V. Murthy, Badam gum: a natural polymer in mucoadhesive drug delivery, Design, optimization, and biopharmaceutical evaluation of badam gum-based metoprolol succinate buccoadhesive tablets, Drug Delivery, 23(1), 195-206 (2014).


3. Z. Li, P.H. Chang, W.T. Jiang, J.S. Jean, The multi-mechanisms and interlayer configurations of metoprolol uptake on montmorillonite, Chemical Engineering Journal, 360, 325-333 (2019).

4. C. Tejada, E. Quiñonez, M. Peña, Contaminantes emergentes en aguas: metabolitos de fármacos una revisión, Facultad de Ciencias Básicas, 10 (1), 80-101 (2014).

5. A. Kant, M. Datta, Montmorillonite used as an extended release delivery vehicle and increase bioavailability for metoprolol tartrate: an antihypertensive drug, World Journal of Pharmaceutical Research, 7 (13), 814-833 (2018).


6. F. Uddin, Montmorillonite: An introduction to properties and utilization, Current Topics in the Utilization of Clay in Industrial and Medical Applications, 1, 1-23 (2018).

7. Y. Vargas, V. Gómez, E. Vázquez, A. García, G. Aguilar, H. Murrieta, M. Salmon, Caracterización espectroscópica, química y morfológica y propiedades superficiales de una montmorillonita mexicana, Revista Mexicana de Ciencias Geológicas, 25(1), 135-144 (2008).

8. J. Bonilla, Síntesis y caracterización del complejo órgano-mineral (atenolol-montmorillonita): proyección hacia una liberación modificada de fármacos, tesis de grado, Universidad Industrial de Santander, 2012.

9. M. Datta, M. Kaur, In vitro release of sodium diclofenac from poloxamer 188 modified, International Journal of Pharmacy and Pharmaceutical Sciences, 6 (5), 100-110 (2014).

10. A. Meunier, “Clays”, Springer-Verlag Berlin Heidelberg, Berlin, 2005, pp. 21, 205.

11. C. Wang, Z. Li, W. Jiang, J. Jean, C. Liu, Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite, Journal of Hazardous Materials, 183, 309-314 (2010).

12. D. Skoog, F. Holler, S. Crouch, “Principios de análisis instrumental”, Editorial Cengage Learning editors S.A de C.V, México D.F, 2008, p. 369.

13. B. Vora, R. Parmar, P. Nayak, D. Shah, Development and validation of the simultaneous Uv spectrophotometric method for estimation of metoprolol succinate and olmesartan medoxomil in the tablet dosage form, Pharmaceutical Methods, 3(1), 44–47 (2012).

14. N. Sarier, E. Onder, S. Ersoy, The modification of Na-montmorillonite by salts of fatty acids: An easy intercalation process, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 371, 40-49 (2010).

15. A. Kant, M. Datta, Organo Montmorillonite as drug delivery vehicle for the extended release of an antibiotic drug, World Journal of Pharmaceutical Research, 6, 574-586 (2016).

16. International Union of Crystallography, “International Tables for Crystallography”, Wiley Online Library, Estados Unidos, 2006.

17. J. Gieseking, “Soil Components”, Springer-VerIag, New York, 1975, Vol.2, pp. 11-12.

18. S. Rojtanatanya, T. Pongjanyakul, Propranolol–magnesium aluminum silicate complex dispersions and particles: Characterization and factors influencing drug release, International Journal of Pharmaceutics, 383(1-2), 106–115 (2010).

19. N, Malekjani, S. Jafari, “Release and Bioavailability of Nanoencapsulated Food Ingredients”, Academic Press, Londres, 2020, p. 223.

20. J. Saurí, D. Millán, J. Suñé, H. Colom, J. Ticó, M. Miñarro, P. Pérez, E. García, Quality by Design approach to understand the physicochemical phenomena involved in controlled release of captopril SR matrix tablets, International Journal of Pharmaceutics, 477 (1-2), 431-441 (2014).

21. M. Grassi, G. Grassi, Mathematical Modelling and Controlled Drug Delivery: Matrix Systems, Current Drug Delivery, 2(1), 97–116 (2005).

22. M. Grassi, R. Lapasin, S. Pricl, The effect of drug dissolution on drug release from swelling polymeric matrices: mathematical modeling, Chemical Engineering Communications, 173(1), 147–173 (1999).

23. S. Agnihotri, S. Jawalkar, T. Aminabhavi, Controlled release of cephalexin through gellan gum beads: Effect of formulation parameters on entrapment efficiency, size, and drug release, European Journal of Pharmaceutics and Biopharmaceutics, 63 (3), 249–261 (2006).

24. J. Stringer, “Basic Concepts in Pharmacology: What You Need to Know for Each Drug Class”, McGraw-Hill Medical, California, 2012, pp. 17-18.
Published
2022-01-01
How to Cite
Pérez Niño, L., Candela Soto, A., & Camargo García, H. (2022). Controlled release of Metoprolol Succinate from the organo-mineral complex Metoprolol Succinate-Montmorillonite. ITECKNE, 19(1). https://doi.org/https://doi.org/10.15332/iteckne.v19i1.2681
Section
Accepted for Publication