Literary Review Of Economic Environmental Dispatch Considering Bibliometric Analysis

  • Fausto Stalin Ruiz Tipán Universidad Politécnica Salesiana
  • Alex David Valenzuela Santillán Universidad Politécnica Salesiana
Keywords: Environmental Economic Dispatch, Multiobjective Optimization, VOSviewer, Bibliometric Analysis


Abstract: This document performs a bibliometric analysis of the topic "Environmental Economic Dispatch" to know the evolution and characteristics of its scientific production. A total of 736 documents published between 2000 and 2020 are analyzed and from these the 15 most relevant ones are extracted, these will be analyzed in detail taking into consideration indicators such as the year of publication, the subject, indexing journal, number of citations, the topic addressed and the proposed methodology. All the information was obtained from the Web of Science (WOS) database, which was used due to its high impact factor. In the methodology, the bibliometric analysis was performed in the Vosviewer software, the type of analysis used is that of citation and the units of analysis used are those of documents, sources, authors, organizations, and countries. The units of analysis have metrics and tables that help the reader to compile the information shown in a better way, taking into consideration the number of citations and the number of documents. In the literature review, the 15 most relevant documents obtained in the bibliometric analysis are analyzed in depth, and a table is attached as a summary of the subject matter and methodology proposed by these documents so that the reader will be able to identify each of them more quickly. The results highlight the most complete document for the proposed topics and the most cited document. This article will be a useful guide for researchers.


Download data is not yet available.

Author Biographies

Fausto Stalin Ruiz Tipán, Universidad Politécnica Salesiana

Ingeniero Eléctrico, Universidad Politécnica Salesiana

Alex David Valenzuela Santillán, Universidad Politécnica Salesiana

MSc. Ingeniería de distribución de Energía, Universidad Politécnica Salesiana


[1] G. Abbas, J. Gu, U. Farooq, M. U. Asad, and M. El-Hawary, “Solution of an Economic Dispatch Problem Through Particle Swarm Optimization: A Detailed Survey - Part I,” IEEE Access, vol. 5, pp. 15105–15141, 2017, doi: 10.1109/ACCESS.2017.2723862.

[2] G. Wood, Allen; Wollenberg, Bruce; Sheblé, Power Generation, Operation and Control, Third Edit. Ney Jersey: IEEE Canada, 2013.

[3] J. K. Arthur, E. A. Frimpong, and J. O. Adjei, “A Literature Survey of Recent Advances in the Solution of Combined Economic Emission Dispatch Problem,” IEEE AFRICON Conf., vol. 2019-Septe, 2019, doi: 10.1109/AFRICON46755.2019.9133761.

[4] L. Wang and C. Singh, “Environmental/Economic Power Dispatch Using a Fuzzified Multi-Objective Particle Swarm Optimization Algorithm,” Electr. Power Syst. Res., vol. 77, no. 12, pp. 1654–1664, Oct. 2007, doi: 10.1016/j.epsr.2006.11.012.

[5] S. P. Simon and S. Hemamalini, “Maclaurin series-based Lagrangian method for economic dispatch with valve-point effect,” IET Gener. Transm. Distrib., vol. 3, no. 9, pp. 859–871, Sep. 2009, doi: 10.1049/iet-gtd.2008.0499.

[6] R. Chakrabarti, P. K. Chattopadhyay, and C. K. Panigrahi, “A review of recent advances in dynamic economic dispatch,” J. Inst. Eng. Electr. Eng. Div., vol. 91, no. JUNE, pp. 9–15, 2010.

[7] W. M. Lin and S. J. Chen, “Bid-based dynamic economic dispatch with an efficient interior point algorithm,” Int. J. Electr. Power Energy Syst., vol. 24, no. 1, pp. 51–57, 2002, doi: 10.1016/S0142-0615(01)00007-2.

[8] J. P. Zhan, Q. H. Wu, C. X. Guo, and X. X. Zhou, “Fast $\lambda$-Iteration Method for Economic Dispatch With Prohibited Operating Zones,” IEEE Trans. Power Syst., vol. 29, no. 2, pp. 990–991, Mar. 2014, doi: 10.1109/TPWRS.2013.2287995.

[9] S.-D. Chen and J.-F. Chen, “A direct Newton–Raphson economic emission dispatch,” Int. J. Electr. Power Energy Syst., vol. 25, no. 5, pp. 411–417, Jun. 2003, doi: 10.1016/S0142-0615(02)00075-3.

[10] A. Farag, S. Al-Baiyat, and T. C. Cheng, “Economic load dispatch multiobjective optimization procedures using linear programming techniques,” IEEE Trans. Power Syst., vol. 10, no. 2, pp. 731–738, 1995, doi: 10.1109/59.387910.

[11] A. M. Sasson and G. J. Fisher, “Nonlinear Programming Solutions for Load-Flow, Minimum-Loss, and Economic Dispatching Problems,” IEEE Trans. Power Appar. Syst., vol. PAS-88, no. 4, pp. 399–409, 1969, doi: 10.1109/TPAS.1969.292460.

[12] L. G. Papageorgiou and E. S. Fraga, “A mixed integer quadratic programming formulation for the economic dispatch of generators with prohibited operating zones,” Electr. Power Syst. Res., vol. 77, no. 10, pp. 1292–1296, 2007, doi: 10.1016/j.epsr.2006.09.020.

[13] W. R. Barcelo and P. Rastgoufard, “Dynamic economic dispatch using the extended security constrained economic dispatch algorithm,” IEEE Trans. Power Syst., vol. 12, no. 2, pp. 961–967, 1997, doi: 10.1109/59.589791.

[14] F. N. Lee and A. M. Breipohl, “Reserve Constrained Economic Dispatch with Prohibited Operating Zones,” IEEE Trans. Power Syst., vol. 8, no. 1, pp. 246–254, 1993, doi: 10.1109/59.221233.

[15] J. Y. Fan and J. D. McDonald, “A practical approach to real time economic dispatch considering unit’s prohibited operating zones,” IEEE Trans. Power Syst., vol. 9, no. 4, pp. 1737–1743, 1994, doi: 10.1109/59.331425.

[16] S. Hemamalini and S. P. Simon, “Dynamic economic dispatch using Maclaurin series based Lagrangian method,” Energy Convers. Manag., vol. 51, no. 11, pp. 2212–2219, 2010, doi: 10.1016/j.enconman.2010.03.015.

[17] M. A. Abido, “Multiobjective Particle Swarm Optimization for Environmental/Economic Dispatch Problem,” Electr. Power Syst. Res., vol. 79, no. 7, pp. 1105–1113, Jul. 2009, doi: 10.1016/j.epsr.2009.02.005.

[18] M. A. Abido, “A Niched Pareto Genetic Algorithm for Multiobjective Environmental/Economic Dispatch,” Int. J. Electr. Power Energy Syst., vol. 25, no. 2, pp. 97–105, 2003, doi: 10.1016/S0142-0615(02)00027-3.

[19] K. Xu, J. Zhou, Y. Zhang, and R. Gu, “Differential evolution based on ε-domination and orthogonal design method for power environmentally-friendly dispatch,” Expert Syst. Appl., vol. 39, no. 4, pp. 3956–3963, Mar. 2012, doi: 10.1016/j.eswa.2011.08.145.

[20] T. Jayabarathi, K. Jayaprakash, D. N. Jeyakumar, and T. Raghunathan, “Evolutionary programming techniques for different kinds of economic dispatch problems,” Electr. Power Syst. Res., vol. 73, no. 2, pp. 169–176, 2005, doi: 10.1016/j.epsr.2004.08.001.

[21] M. Vanitha, “Non Convex Economic Load Dispatch Problem By Efficient Biogeography Based Optimization Algorithm,” Intell. Syst. Ref. Libr., vol. 62, pp. 81–91, 2014, doi: 10.1007/978-3-319-03404-1_5.

[22] K. Vishwakarma, H. Dubey, M. Pandit, and B. Panigrahi, “Simulated annealing approach for solving economic load dispatch problems with valve point loading effects,” Int. J. Eng. Sci. Technol., vol. 4, no. 4, pp. 60–72, 2013, doi: 10.4314/ijest.v4i4.6.

[23] S. Pothiya, I. Ngamroo, and W. Kongprawechnon, “Ant colony optimisation for economic dispatch problem with non-smooth cost functions,” Int. J. Electr. Power Energy Syst., vol. 32, no. 5, pp. 478–487, 2010, doi: 10.1016/j.ijepes.2009.09.016.

[24] T. Niknam, H. D. Mojarrad, H. Z. Meymand, and B. B. Firouzi, “A new honey bee mating optimization algorithm for non-smooth economic dispatch,” Energy, vol. 36, no. 2, pp. 896–908, 2011, doi: 10.1016/

[25] B. K. Panigrahi and V. Ravikumar Pandi, “Bacterial foraging optimisation: Nelder–Mead hybrid algorithm for economic load dispatch,” IET Gener. Transm. Distrib., vol. 2, no. 4, p. 556, 2008, doi: 10.1049/iet-gtd:20070422.

[26] M. H. Sulaiman, M. W. Mustafa, Z. N. Zakaria, O. Aliman, and S. R. Abdul Rahim, “Firefly algorithm technique for solving economic dispatch problem,” 2012 IEEE Int. Power Eng. Optim. Conf. PEOCO 2012 - Conf. Proc., no. June, pp. 90–95, 2012, doi: 10.1109/PEOCO.2012.6230841.

[27] N. T. P. Thao and N. T. Thang, “Environmental Economic Load Dispatch with Quadratic Fuel Cost Function Using Cuckoo Search Algorithm,” Int. J. u- e-Service, Sci. Technol., vol. 7, no. 2, pp. 199–210, 2014, doi: 10.14257/ijunesst.2014.7.2.19.

[28] B. Mallikarjuna, M. T. Student, K. H. Reddy, and O. Hemakesavulu, “Economic Load Dispatch Problem with Valve – Point Effect Using a Binary Bat Algorithm,” ACEEE Int. J. Electr. Power Eng., vol. 4, no. 3, pp. 33–38, 2013.

[29] T. Jayabarathi, T. Raghunathan, B. R. Adarsh, and P. N. Suganthan, “Economic dispatch using hybrid grey wolf optimizer,” Energy, vol. 111, pp. 630–641, 2016, doi: 10.1016/

[30] E. Sayedi, M. M. Farsangi, M. Barati, and K. Y. Lee, “A modified Shuffled frog leaping algorithm for nonconvex economic dispatch problem,” IEEE Power Energy Soc. Gen. Meet., pp. 1–8, 2012, doi: 10.1109/PESGM.2012.6345586.

[31] A. Y. Abdelaziz, E. S. Ali, and S. M. Abd Elazim, “Implementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systems,” Energy, vol. 101, pp. 506–518, Apr. 2016, doi: 10.1016/

[32] T. Niknam, F. Golestaneh, and M. S. Sadeghi, “θ-Multiobjective teaching-learning-based optimization for dynamic economic emission dispatch,” IEEE Syst. J., vol. 6, no. 2, pp. 341–352, 2012, doi: 10.1109/JSYST.2012.2183276.

[33] W. Sa-Ngiamvibool, S. Pothiya, and I. Ngamroo, “Multiple tabu search algorithm for economic dispatch problem considering valve-point effects,” Int. J. Electr. Power Energy Syst., vol. 33, no. 4, pp. 846–854, 2011, doi: 10.1016/j.ijepes.2010.11.011.

[34] L. Wang and L. P. Li, “An effective differential harmony search algorithm for the solving non-convex economic load dispatch problems,” Int. J. Electr. Power Energy Syst., vol. 44, no. 1, pp. 832–843, 2013, doi: 10.1016/j.ijepes.2012.08.021.

[35] B. Mohammadi-ivatloo, A. Rabiee, A. Soroudi, and M. Ehsan, “Imperialist competitive algorithm for solving non-convex dynamic economic power dispatch,” Energy, vol. 44, no. 1, pp. 228–240, Aug. 2012, doi: 10.1016/

[36] I. N. The, O. F. Power, and I. Committee, “Present practices in the economic operation of power systems,” IEEE Trans. Power Appar. Syst., vol. PAS-90, no. 4, pp. 1768–1775, 1971, doi: 10.1109/TPAS.1971.293169.

[37] A. Lee, Fred; Breipohl, “Reserve constrained economic dispatch with prohibited zones,” IEEE Trans. Power Syst., vol. 53, no. 9, pp. 1689–1699, 1993.

[38] M. Rodrigues Barbosa Dos Santos et al., “A Proposed Methodology Involving Progressive Bounded Constraints and Interior-Exterior Methods in Smoothed Economic/Environmental Dispatch Problems,” IEEE Lat. Am. Trans., vol. 15, no. 8, pp. 1422–1431, 2017, doi: 10.1109/TLA.2017.7994788.

[39] J. I. de Granda-Orive, A. Alonso-Arroyo, and F. Roig-Vázquez, “¿Qué base de datos debemos emplear para nuestros análisis bibliográficos? Web of Science versus SCOPUS,” Arch. Bronconeumol., vol. 47, no. 4, p. 213, 2011, doi: 10.1016/j.arbres.2010.10.007.

[40] M. Romero, Manuel; Olite, Diego; Álvarez, “La contaminación del aire: su repercusión como problema de salud,” Rev. Cubana Hig. Epidemiol., vol. 44, p. 14, 2006.

[41] M. A. Abido, “Environmental/Economic Power Dispatch Using Multiobjective Evolutionary Algorithms,” IEEE Trans. Power Syst., vol. 18, no. 4, pp. 1529–1537, 2003, doi: 10.1109/TPWRS.2003.818693.

[42] M. A. Abido, “A novel multiobjective evolutionary algorithm for environmental/economic power dispatch,” Electr. Power Syst. Res., vol. 65, no. 1, pp. 71–81, 2003, doi: 10.1016/S0378-7796(02)00221-3.

[43] M. A. Abido, “Multiobjective Evolutionary Algorithms for Electric Power Dispatch Problem,” IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 315–329, 2006, doi: 10.1109/TEVC.2005.857073.

[44] S. Agrawal, B. K. Panigrahi, and M. K. Tiwari, “Multiobjective particle swarm algorithm with fuzzy clustering for electrical power dispatch,” IEEE Trans. Evol. Comput., vol. 12, no. 5, pp. 529–541, 2008, doi: 10.1109/TEVC.2007.913121.

[45] Y. M. Atwa and E. F. El-Saadany, “Optimal allocation of ESS in distribution systems with a high penetration of wind energy,” IEEE Trans. Power Syst., vol. 25, no. 4, pp. 1815–1822, 2010, doi: 10.1109/TPWRS.2010.2045663.

[46] M. Basu, “Economic Environmental Dispatch Using Multi-Objective Differential Evolution,” Appl. Soft Comput. J., vol. 11, no. 2, pp. 2845–2853, 2011, doi: 10.1016/j.asoc.2010.11.014.

[47] W. Gu et al., “Modeling, planning and optimal energy management of combined cooling, heating and power microgrid: A review,” Int. J. Electr. Power Energy Syst., vol. 54, no. 2014, pp. 26–37, 2014, doi: 10.1016/j.ijepes.2013.06.028.

[48] M. E. Khodayar, L. Wu, and M. Shahidehpour, “Hourly coordination of electric vehicle operation and volatile wind power generation in SCUC,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1271–1279, 2012, doi: 10.1109/TSG.2012.2186642.

[49] A. A. Moghaddam, A. Seifi, T. Niknam, and M. R. Alizadeh Pahlavani, “Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source,” Energy, vol. 36, no. 11, pp. 6490–6507, 2011, doi: 10.1016/

[50] L. Suganthi, S. Iniyan, and A. A. Samuel, “Applications of fuzzy logic in renewable energy systems - A review,” Renew. Sustain. Energy Rev., vol. 48, pp. 585–607, 2015, doi: 10.1016/j.rser.2015.04.037.

[51] B. C. Ummels, M. Gibescu, E. Pelgrum, W. L. Kling, and A. J. Brand, “Impacts of wind power on thermal generation unit commitment and dispatch,” IEEE Trans. Energy Convers., vol. 22, no. 1, pp. 44–51, 2007, doi: 10.1109/TEC.2006.889616.

[52] H. zhi Wang, G. qiang Li, G. bing Wang, J. chun Peng, H. Jiang, and Y. tao Liu, “Deep learning based ensemble approach for probabilistic wind power forecasting,” Appl. Energy, vol. 188, pp. 56–70, 2017, doi: 10.1016/j.apenergy.2016.11.111.

[53] A. Zakariazadeh, S. Jadid, and P. Siano, “Multi-objective scheduling of electric vehicles in smart distribution system,” Energy Convers. Manag., vol. 79, pp. 43–53, 2014, doi: 10.1016/j.enconman.2013.11.042.
Accepted for Publication