Steady state stability in electrical power systems considering operation limits in generators, transformers and transmission lines

  • Fredy Estuardo Tamayo Guzmán Universidad Politécnica Salesiana
  • Carlos Andrés Barrera-Singaña Universidad Politécnica Salesiana
Keywords: Steady state stability, Capability curve, Synchronous generator, Transformer, Transmission Line

Abstract

Electrical power systems are exposed to several events that can cause unstable operation scenarios. This is due to improper operation of certain components. If an event occurs, the system must be designed to overcome that contingency, thus remaining in a permanent condition that must be evaluated in order to monitor and prevent a possible collapse of the system. An evaluation of steady state stability is proposed at this work based on the capacity curves of generators, transformers and transmission lines. These remarked curves provide information on the operation point of these elements, thus allowing the application of remedial actions. PowerFactory and Matlab are used to carry out the tool for monitoring the operation points after a contingency. The effectiveness of the developed tool is validated at the IEEE 39-bus power system model, where results shows that the functionalaty for different contingencies based on the operating conditions when the components of the power system are varied, cosnquently, the tool identifies cases that require actions at the operational level.

Downloads

Download data is not yet available.

Author Biographies

Fredy Estuardo Tamayo Guzmán, Universidad Politécnica Salesiana

Universidad Politécnica Salesiana, Quito

Carlos Andrés Barrera-Singaña, Universidad Politécnica Salesiana

Universidad Politécnica Salesiana, Quito

References

[1] F. Report, “First Report of Power System Stability,” Trans. Am. Inst. Electr. Eng., vol. 56, no. 2, pp. 261–282, 1937, DOI: https://doi.org/10.1109/T-AIEE.1937.5057521

[2] I. J. T. F. on S. T. and Definitions, “Definition and Classification of power system stability,” IEEE Trans. POWER Syst. VOL. 19, NO. 2, MAY 2004, vol. 19, pp. 1387–1400, 2004.

[3] Antonio Ortiz, “Análisis de Estabilidad de Voltaje en Estado Estable del Sistema de Subtransmisión,” Statew. Agric. L. Use Baseline 2015, vol. 1, no. Xc, 2015, [Online]. Available: https://bibdigital.epn.edu.ec/bitstream/15000/4886/1/Analisis Estabilidad Voltaje.pdf

[4] L. Zheng, W. Hu, Y. Min, and J. Ma, “A Novel Method to Monitor and Predict Voltage Collapse: The Critical Transitions Approach,” IEEE Trans. Power Syst., vol. 33, no. 2, pp. 1184–1194, 2018, DOI: https://doi.org/10.1109/TPWRS.2017.2737465

[5] L. L. Grisby, Electrical Power Engineering Handbook: Power System Stability and Control, vol. 53, no. 9. 2012.

[6] D. Lauria, G. Mazzanti, and S. Quaia, “The loadability of overhead transmission lines - Part II: Analysis of double-circuits and overall comparison,” IEEE Trans. Power Deliv., vol. 29, no. 2, pp. 518–524, 2014, DOI: https://doi.org/10.1109/TPWRD.2013.2280963

[7] V. Rexhepi, “An Analysis of Power Transformer Outages and Reliability Monitoring,” Energy Procedia, vol. 141, pp. 418–422, 2017, DOI: https://doi.org/10.1016/j.egypro.2017.11.053

[8] S. Thakar, A. S. Vijay, and S. Doolla, “Effect of P-Q Limits on Microgrid Reconfiguration: A Capability Curve Perspective,” IEEE Trans. Sustain. Energy, vol. 11, no. 3, pp. 2040–2048, 2020, DOI: https://doi.org/10.1109/TSTE.2019.2952043

[9] P. S. R. Murty, Power System Stability, 2da ed. India: Publicatios, B S, 2017.

[10] C. F. Wagner, “Studies of Transmission Stability,” Trans. Am. Inst. Electr. Eng., vol. 45, pp. 51–94, 1926, DOI: https://doi.org/10.1109/T-AIEE.1926.5061208

[11] A. . Fallis, “Analisis de estabilidad de tension considerando sistemas de monitoreo de area amplia y caracterısticas de carga mixtas,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2013.

[12] M. Qiu, W. Gao, M. Chen, J. W. Niu, and L. Zhang, “Energy efficient security algorithm for power grid wide area monitoring system,” IEEE Trans. Smart Grid, vol. 2, no. 4, pp. 715–723, 2011, DOI: https://doi.org/10.1109/TSG.2011.2160298

[13] T. Athay, R. Podmore, and S. Virmani, “A practical method for the direct analysis of transient stability,” IEEE Trans. Power Appar. Syst., vol. PAS-98, no. 2, pp. 573–584, 1979, DOI: https://doi.org/10.1109/TPAS.1979.319407

[14] J. D. McCalley, “A risk-based security index for determining operating limits in stability-limited electric power systems,” IEEE Trans. Power Syst., vol. 12, no. 3, pp. 1210–1219, 1997, DOI: https://doi.org/10.1109/59.630463

[15] R. Pérez, H. Torrez, E. Fernández, and S. Fernández, “Sistema de Monitoreo en Tiempo Real para el Diagnóstico de Transformadores de Potencia en una Empresa de Energía,” Lat. Am. Caribb. Conf., no. 2, p. 11, 2012.

[16] J. Rodríguez and V. Orejuela, “Modelo computacional para determinar el nivel óptimo de cargabilidad de los transformadores de potencia del sistema nacional interconectado,” Ingenius, no. 9, pp. 36–41, 2013, DOI: https://doi.org/10.17163/ings.n9.2013.05

[17] W. Lai, W. Li, H. Meng, R. Ding, Y. Wang, and S. Fang, “Research on the Relation between Load Coefficient and Hot Spot Temperature of Oil-immersed Power Transformer,” 2019 IEEE Int. Conf. Power, Intell. Comput. Syst. ICPICS 2019, pp. 393–396, 2019, DOI: https://doi.org/10.1109/ICPICS47731.2019.8942454

[18] D. E. Moghadam, A. Shiri, S. Sadr, and D. A. Khaburi, “A practical method for calculation of over-excited region in the synchronous generator capability curves,” IEEE Int. Symp. Ind. Electron., pp. 727–732, 2014, DOI: https://doi.org/10.1109/ISIE.2014.6864702

[19] I. F. Carmichael and R. M. Gove, “Geometric construction of the stability limits of synchronous machines,” Proc. Inst. Electr. Eng., vol. 113, no. 3, p. 506, 1966, DOI: https://doi.org/10.1049/piee.1966.0081

[20] M. M. Adibi and D. P. Milanicz, “Reactive capability limitation of synchronous machines,” Power Syst. Restor. Methodol. Implement. Strateg., vol. 9, no. 1, pp. 130–141, 2000, DOI: https://doi.org/10.1109/9780470545607.ch18

[21] B. S. Guru and Hiziroglu, 242659502-Maquinas-Electricas-y-Transformadores-GURU-B_pdf.pdf. Oxford: Oxford University Press.

[22] M. F. B. Aronés, “CURVA DE CAPABILIDAD D . Zocimo Ñaupari Huatuco,” vol. 1 Lima ,Pe, p. 14, 2011, [Online]. Available: file:///C:/Users/fredi/Downloads/EVALUACION_DE_LA_OPERACION_DEL_GENERADOR.pdf

[23] A. Berizzi, A. Silvestri, D. Zaninelli, and R. Marconato, “The capability of alternators in voltage collapse analysis,” Electr. Mach. Power Syst., vol. 25, no. 2, pp. 169–180, 1997, DOI: https://doi.org/10.1080/07313569708955731

[24] Z. Maljkovic and I. Gasparac, “Operating limits of underexcited synchronous generator,” Int. Conf. Power Eng. Energy Electr. Drives, no. May, pp. 1374–1377, 2013, DOI: https://doi.org/10.1109/PowerEng.2013.6635814

[25] P. Da Costa, A. N. De Souza, P. S. Da Silva, and J. E. Do Cogo Castanho, “A visual tool for building synchronous generator capability curves,” Conf. Proc. - IEEE SOUTHEASTCON, 2013, DOI: https://doi.org/10.1109/SECON.2013.6567431

[26] R. Gutman, “Analytical Development of Loadability Characteristics,” vol. IEEE Trans, no. 2, pp. 606–617, 1979.

[27] D. G. Camilo Narvaez Pérez, “Ciindet 2008,” p. 10.

[28] N. N. Jesús Játiva, “Estudio_de_las_caracteristicas_de_cargabilidad L-T (jornadas)(26).pdf.” Jortnadas de Ingeniería Eléctrica y Electrónica, Quito_ecuador, p. 15, 1985.
Published
2021-07-01
How to Cite
Tamayo Guzmán, F., & Barrera-Singaña, C. (2021). Steady state stability in electrical power systems considering operation limits in generators, transformers and transmission lines. ITECKNE, 18(2), 141-149. https://doi.org/https://doi.org/10.15332/iteckne.v18i2.2599
Section
Research and Innovation Articles