Prediction of Compressive Strengths of Concrete with Partial Fine Aggregate of Plastic Using Artificial Neural Network and Revisions

Keywords: Plastic, fine aggregates, compressive strength, artificial neural network

Abstract

In recent past years, plastic waste has been a environmental menace. Utilization of plastic waste as fine aggregate substitution could reduce the demand and negative impacts of sand mining while addressing waste plastic challenges.

This study aims at evaluating compressive strengths prediction models for concrete with plastic—mainly recycled plastic—as partial replacement or addition of fine aggregates, by use of artificial neural networks (ANNs), developed in OCTAVE 5.2.0 and datasets from reviews. 44 datasets from 8 different sources were used, that included four input variables namely:- water: binder ratio; control compressive strength (MPa); % plastic replacement or additive by weight and plastic type; and the output variable was the compressive strength of concrete with partial plastic aggregates.

Various models were run and the selected model, with 14 nodes in hidden layer and 320,000 iterations, indicated overall root mean square error (RMSE) , absolute factor of variance (R2), mean absolute error (MAE) and mean absolute percentage error (MAPE) values of 1.786 MPa, 0.997, 1.329 MPa and 4.44 %. Both experimental and predicted values showed a generally increasing % reduction of compressive strengths with increasing % plastic fine aggregate.

The model showed reasonably low errors, reasonable accuracy and good generalization. ANN model could be used extensively in modeling of green concrete, with partial waste plastic fine aggregate. The study recommend ANNs models application as possible alternative for green concrete trial mix design. Sustainable techniques such as low-cost superplasticizers from recycled material and cost-effective technologies to adequately sizing and shaping plastic for fine aggregate application should be encouraged, so as to enhance strength of concrete with partial plastic aggregates.

Downloads

Download data is not yet available.

Author Biography

Cornelius Ngunjiri Ngandu, Egerton University
M.Eng.Environmental Engineering, Egerton University, Egerton, Kenya.

References

[1] European Environmental Agency, «Resource efficiency and waste: The Plastic waste trade in the circular economy, Briefing no. 7/2019,» Publications office of the EU, 2019. DOI: http:// 10.2800/220248
[2] V. Chandwani, V. Agrawal, R. Nagar y S. Singh, «Modeling slump of ready-mix concrete using artificial neural network,» International journal of technology, vol. 6, nº 2, pp. 207-216, 2015. DOI: http://dx.doi.org/10.14716/ijtech.v6i2.213
[3] P. Chopra, R. K. Sharma y M. Kumar, «Prediction of compressive strength of concrete using artificial neural network and genetic programming,» Advances in material science and engineering, vol. 2016, pp. 1687-8434, 2016. DOI: https://doi.org/10.1155/2016/7648467
[4] A. M. al-Swaidani y W. T. Khwies, «Applicability of artificial neural networks to predict mechanical and permeability properties of volcanic scoria-based concrete,» Advances in civil engineering, vol. 2018, pp. 1687-8086, 2018. DOI: https://doi.org/10.1155/2018/5207962
[5] R. Jayaseelan, G. Pandulu y A. G, «Neural network for the prediction of fresh properties and compressive strength of flowable concrete,» Journal of Urban and environmental engineering, vol. 13, nº 1, pp. 183-197, 2019. DOI: https://doi.org/10.4090/juee.2019.v13n1.183-197

[6] D. Sathyan, K. B. Anand, A. J. Prakash y B. Premjith, «Modeling the fresh and hardened stage properties of self-compacting concrete using random kitchen sink algorithm,» International journal of concrete structures and materials, vol. 12, pp. 2234-1315, 2018. DOI: https://doi.org/10.1186/s40069-018-0246-7
[7] B. R. K. Chunchu y J. Putta, «Effect of recycled plastic granules as a partial substitute for natural resource sand on the durability of SCC,» Resources, vol. 8, nº 3, p. 133, 2019. DOI: https://doi.org/10.3390/resources8030133
[8] A. Sojobi, «Evaluation of the suitability of low-density polyethylene (LDPE) waste as fine aggregate in concrete,» Nigerian journal of technology (NIJOTECH), vol. 33, nº 4, pp. 409-425. DOI: http://dx.doi.org/10.4314/njt.v33i4.1
[9] R. Dharmaraj y G. Iyappan, «Suitability of partial replacement of pulverized plastic as fine aggregate in cement concrete,» Indian journal of science and technology, vol. 9, nº 23, pp. 1-6, 2016. DOI: https://doi.org/10.17485/ijst/2016/v9i23/95856
[10] C. Ngandu, «Prediction of Compressive Strengths for Rice Husks Ash incorporated concrete, Using Neural Network and Reviews,» ITECKNE, vol. 18, nº 2, pp. 99-107, 2021. DOI: https://doi.org/10.15332/iteckne.v18i1.2532
[11] B. Jabłońska, P. Kiełbasa, M. Korenko y T. Dróżdż2ORCIDO, «Physical and chemical properties of waste from PET bottles washing as a component of solid fuels,» Energies, vol. 12, nº 11, p. 2197, 2019. DOI: https://doi.org/10.3390/en12112197
[12] N. Saikia y J. d. Brito, «Waste polyethylene terephthalate as an aggregate in concrete,» Material research, vol. 16, nº 2, p. 341–350, 2013. DOI: https://doi.org/10.1590/S1516-14392013005000017
[13] T. W. Adejumo y S. Jibrin, «Strength Characteristics of concrete with plastic granules as partial replacement for sand in Federal university of Technology, Minna [online document], 2020. Available:(Accessed March 15,» Federal university of Technology, 2021. Available: https://staff.futminna.edu.ng/CIE/content/journal/PF1258/20.pdf
[14] J. Thorneycroft, P. Savoikar, J. Orr y R. Ball, «Performance of concrete with recycled plastic as a partial replacement for sand,» Dundee, 2016. Available: https://researchportal.bath.ac.uk/en/publications/performance-of-concrete-with-recycled-plastic-as-a-partial-replacement-for-sand(2c25def5-34a1-4d85-9f9b-705fbe2d2f86).html
[15] H. Bolat y P. Erkus, «Use of polyvinyl chloride (PVC) powder and granules as aggregate replacement in concrete mixtures,» Science and Engineering of Composite Materials, vol. 23, pp. 209-216, 2014. DOI: https://doi.org/10.1515_secm-2014-0094
[16] K. S. Gopi, T. Srinivas y S. P. Raju, «Feasibility study of recycled plastic waste as fine aggregate in concrete,» 2nd international conference on design and manufacturing aspects of sustainable energy , vol. 184, 2020. Available at: https://doi.org/10.1051/e3sconf/202018401084
[17] B. Rai, S. T. Rushad, B. Kr y S. Duggal, «Study of waste plastic mix concrete with plasticizer,» International Scholarly Research Network (ISRN) Civil Engineering, vol. 2012, 2012. DOI: https://doi.org/10.5402/2012/469272
[18] S. D. A. Shubbar y A. S. Al-Shadeedi, «Utilization of waste plastic bottles as fine aggregate in concrete,» International Scholarly Research Network (ISRN) Civil Engineering, vol. 18, nº 2, 2017. http://journals.uokufa.edu.iq/index.php/kje/article/view/6068/5321
[19] A. I. Al-Hadithi y M. F. A. Alani, «Mechanical Properties of High Performance Concrete Containing Waste Plastic as Aggregate,» Journal of Engineering, vol. 21, nº 8, pp. 100-115, 015.
https://joe.uobaghdad.edu.iq/index.php/main/article/view/377/328
[20] H. H. Hussein, O. A. Eedan y M. K. Ahmed, «Mechanical, thermal and acoustical properties of concrete with fine Polyvinyl chloride (PVC),» Iraq Journal of Civil Engineering, vol. 11, nº 2, pp. 81-91, 2017.
https://iasj.net/iasj/download/57ee0b200ca5a4b7
[21] N. S. Mohammed, B. A. Hamza, N. H. AL-Shareef y H. H. Hussein, «Structural Behavior of Reinforced Concrete Slabs Containing Fine Waste Aggregates of Polyvinyl Chloride,» Buildings, vol. 11, nº 1, p. 26, 2021. https://doi.org/10.3390/buildings11010026
[22] S. Burman, P. Meena, M. Farha y P. Meena4, «Development of low-cost concrete using waste plastics as sand replacement,» Dogo Rangsang Research Journal. Vol. 10 (7) (5), 2020. pp. 167–171., vol. 10, nº 5, 2020.
[23] N. Morova y S. Terzi, «Evaluation of colemanite waste as aggregate hot mix asphalt concrete,» Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 19, nº 2, pp. 8-15, 2015.
[24] A. Hasanzade-Inallua, P. H. Inalloub y B. Eskandarinejadc, «Prediction of Compressive Strength of Concrete with Manufactured Sand using Neural Networks and Bat Algorithm,» Soil Structure Interaction Journal, vol. 4, pp. 51-52, 2019.
[25] A. Henigal, E. Elbeltgai, M. Eldwiny y M. Serry, «Artificial neural network model for forecasting concrete compressive strength and slump in Egypt,» Journal of Al Azhar university engineering sector, vol. 11, nº 39, 2016.
[26] D. B. S. H. a. R. W. JW Eaton, «GNU Octave version 5.2.0 manual: A High-level interactive language for numerical computations,» 2019. [En línea]. Available: https.//www.gnu.org/software/octave/doc/v.5.2.0.
[27] S. Oman, «A Simple Neural Network in Octave – Part 2,» 2016. [En línea]. Available: https://aimatters.wordpress.com/2016/01/03/a-simple-neural-network-in-octave-part-2/.
[28] Geeks for Geeks, Activation Functions in Neural Networks , «Activation functions in Neural Networks,» 2021. [En línea]. Available: https://www.geeksforgeeks.org/activation-functions-neural-networks/.
[29] Gupta, Fundamentals of Deep Learning-Activation Functions and When to Use Them? , «Analytics Vidhya,» 2020. [En línea]. Available: https://www.analyticsvidhya.com/blog/2020/01/fundamentals-deep-learning-activation-functions-when-to-use-them/.
[30] J. Zhang, Y. Zhao y H. Li, «Experimental Investigation and Prediction of Compressive Strength of Ultra-High-Performance Concrete Containing Supplementary Cementitious Materials,» Advances in Material Science and Engineering, vol. 2017, pp. 1-8, 2017. DOI: https://doi.org/10.1155/2017/4563164
[31] C. Vinay, A. Vinay y RavindraNagar, «Modeling slump of ready-mix concrete using genetically evolved artificial neural network,» Advance artificial neural systems, vol. 2014, pp. 1-9, 2014. http://dx.doi.org/10.1155/2014/629137
[32] K. Tuntisukrarom y R. Cheerarot, «Prediction of Compressive Strength Behavior of Ground Bottom Ash Concrete by an Artificial Neural Network,» Advances in Materials Science and Engineering, vol. 2020, pp. 1-16, 2020. https://doi.org/10.1155/2020/2608231
[33] L Baumbach, Neural network-activation function, Morioh.com. [Online]. Available at: https://morioh.com/p/21b55ba475f9 (accessed May 11th, 2021).
[34] C Campos, CJ Silva, and DFM Torres, “Numerical optimal control of HIV transmission in octave/MATLAB,” Mathematical and computational applications, 25, 1: doi:10.3390/mca25010001
[35] J Żurek, J Małachowski, J Ziółkowski, and J Szkutnik-RogoŻ, “Reliability analysis of technical means of transport,” Applied sciences. 10,3016; doi:10.3390/app10093016
Published
2022-01-01
How to Cite
Ngandu, C. (2022). Prediction of Compressive Strengths of Concrete with Partial Fine Aggregate of Plastic Using Artificial Neural Network and Revisions. ITECKNE, 19(1), 61-68. https://doi.org/https://doi.org/10.15332/iteckne.v19i1.2548
Section
Research and Innovation Articles