Discoloration of alizarin red on thin films of Fe (III)-tetracarboxyphenyl porphyrin deposited on silicon oxide
Abstract
Alizarin Red is a water soluble anthraquinone dye used extensively in the textile industry as a staining agent and is considered to be one of the most recalcitrant and durable pollutants. Fenton reaction can be used to destroy a wide variety of organic compounds: a ferrous ion reacts with hydrogen peroxide (H2O2) to form hydroxyl radical (HO•) which is a powerful oxidizing agent. The rate of this reaction could be increased when exposed o UV–vis light, this method is known as photo-assisted Fenton process and constitutes an attractive alternative of advance oxidation process. In this work, we studied the alizarin red dye photocatalytic discoloration through heterogeneous Photo-Fenton process induced by visible light; we used tetra (4-carboxyphenyl) porphyrin iron (III) adsorbed on silicon dioxide thin films. The characterization of the catalyst was carried out by UV-Vis, diffuse reflectance and IR-FT; The tests were carried out at three (3) pH values 1.0, 3.0 and 5.0; finally, the kinetic model described by Langmuir-Hinshelwood was used to obtain kinetic parameters for photo-discoloration process. The results showed that at pH = 1.0 highest alizarin red photo-discoloration percentage was reported; furthermore, after applied the pseudo-first order model, we obtained rate constants (k) for discoloration process that finds the highest k value was 1.1x10-2 min-1. The hydroxyl radicals were detected by chemical trapping through indirect fluorescence of the 2-hydroxyterephthalic acid. Photo-Fenton processes based on heterogeneous catalysis systems solve part of these environmental problems providing an easy separation and recovery of the catalyst from the treated wastewater, wherein it is noncorrosive, and, besides, it is environmentally friendly.
Downloads
References
[2] P. Carneiro, G. Umbuzeiro, D. Oliveira and M. Zanoni, “Assessment of water contamination caused by a mutagenic textile effluent/dye house effluent bearing disperse dyes”. J. Hazard. Mat. vol. 174, pp. 694-699, 2010.
https://doi.org/10.1016/j.jhazmat.2009.09.1067
[3] S. Kansal, R. Lamba, S. Metha and A. Umar, “Photocatalytic degradation of Alizarin Red S using simply synthesized ZnO nanoparticles”. Mat. Lett. vol. 106, pp. 385-389, 2013. DOI: 10.1016/j.matlet.2013.05.074
[4] S. Sharma and A. Bhattacharya, “Drinking water contamination and treatment techniques”. App. Wat. Sci. vol. 7, pp. 1043-1067, 2017. DOI: 10.1007/s13201-016-0455-7
[5] B. Pava-Gómez, X. Vargas-Ramírez and C.E. Diaz-Uribe, “Physicochemical study of adsorption and photodegradation processes of methylene blue on copper-doped TiO2 films”. J. Photochem. Photobiol A: Chem. vol. 360, pp. 13-15, 2018. DOI: 0.1016/j.jphotochem.2018.04.022
[6] C. Diaz-Uribe, F. Martínez and W, Vallejo, “Synthesis and characterization of TiO2 thin films doped with copper to be used in photocatalysis” Revista Iteckne. vol. 10 (1), pp. 16-20, 2013. DOI: 10.15332/iteckne.v10i1.188
[7] W. Vallejo, C.E. Diaz-Uribe C.E. and A. Cantillo, “Methylene blue photocatalytic degradation under visible irradiation on TiO2 thin films sensitized with Cu and Zn tetracarboxy-phthalocyanines”. J. Photochem. Photobiol A: Chem. vol. 299, pp. 80-86, 2015. DOI: 10.1016/j.jphotochem.2014.11.009
[8] M. Cheng, G. Zeng, D. Huang, C. Lai, P. Xu, C. Zhang and Y. Liu, “Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review”. Chem. Eng. J. vol. 284, pp. 582-598, 2016. DOI: 10.1016/j.cej.2015.09.001
[9] R. Lloyda, P. Hannaa and R. Masona, “The Origin of the Hydroxyl Radical Oxygen in the Fenton Reaction”. Free Rad. Biol. Med. vol. 22, pp. 885-888, 1997. DOI: 10.1016/s0891-5849(96)00432-7
[10] B. Southworth and B. Voelker, “Hydroxyl Radical Production via the Photo-Fenton Reaction in the Presence of Fulvic Acid”. Environ. Sci. Technol. vol. 37 (6), pp. 1130-1136, 2013. DOI: 10.1021/es020757l
[11] C. Diaz-Uribe, W. Vallejo and J. Miranda, “Photo-Fenton oxidation of phenol with Fe(III)-tetra-4-carboxyphenylporphyrin/SiO2 assisted with visible light”. J. Photochem. Photobiol A: Chem. vol. 294, pp. 75-80, 2014. DOI: 0.1016/j.jphotochem.2014.08.004
[12] C. Diaz-Uribe, E. Puello and W. Vallejo, “Particle size distributions by dynamic light scattering of copper (II) tetracarboxyphenilporphyrn anchored on titanium dioxide”. Revista Iteckne. vol. 10(2), pp. 224-228. 2013. DOI: 10.15332/iteckne.v10i2.400
[13] A. Adler, F. Longo, J. Finarelli, J. Goldmacher, J. Assour and L. Korsakoff, “A simplified synthesis for mesotetraphenylporphine”. J. Org. Chem. vol. 32(2), pp. 476, 1967. DOI: 10.1021/jo01288a053
[14] A. Adler, F. Longo, F. Kampas and J. Kim, “Oxygen Reduction on Transition-Metal Porphyrins in Acid Electrolyte II. Stability”. J. Inorg. Nucl. Chem. 32, 2443, 1970. DOI: 10.1002/bbpc.19810850917
[15] T. López, T. López-Gaona and R. Gómez, “Synthesis, Characterization and Activity of Ru/SiO2 Catalysts Prepared By the Sol-Gel Method”. J. Non-Cryst. Solids. 10(2-3), 170-174, 1989. DOI: 10.1016/0022-3093(89)90253-6
[16] K. Ishibashi, A. Fujishima, T. Watanabe, and K. Hashimoto, “Quantum yields of active oxidative species formed on TiO2 photocatalyst”. J. Photochem. Photobiol A: Chem. vol. 134, pp. 139-42, 2000. DOI: 10.1016/S1010-6030(00)00264-1
[17] M. Gouterman, G.H. Wagnière and L.C. Snyder, “Spectra of porphyrins. Part II. Four orbital model, J. Mol. Spectrosc.”, vol. 11, pp. 108-127, 1963. DOI: 10.1016/0022-2852(63)90011-0
[18] W. Zheng, N. Shan, L. Yu and X. Wang, “UV-visible, fluorescence and EPR properties of porphyrins and metalloporphyrins”, Dyes Pigmen. vol. 77, pp. 153-157, 2008. DOI: 10.1016/j.dyepig.2007.04.007
[19] M. Assis, R. John and L. Smith, “Hydrocarbon oxidation with iodosylbenzene catalysed by the sterically hindered iron(III) 5-(pentafluorophenyl)-10,15,20-tris(2,6-dichlorophenyl)porphyrin in homogeneous solution and covalently bound to silica”, J. Chem. Soc., Perkin Trans. vol. 2, pp. 2221-2226, 1998. DOI: 10.1039/A804679D
[20] C.E. Diaz-Uribe, M. C. Daza, E. A. Páez-Mozo, F. Martínez O., C. L.B. Guedes and E. Di Mauro, “Visible light singlet oxygen production with tetra(4-carboxyphenyl) porphyrin/SiO2”. J. Photochem. Photobiol. A: Chem. vol. 259, pp. 47-52, 2013. DOI: 10.1016/j.jphotochem.2013.03.005
[21] M. Trytek, M. Majdan, A. Lipke and J. Fiedurek, “Sol–gel immobilization of octaethylporphine and hematoporphyrin for biomimetic photooxidation of α-pinene”, J. Catal. vol. 286, pp. 193-205, 2012. DOI: 10.1016/j.jcat.2011.11.005
[22] I.K. Konstantinou and T.A. Albanis, “TiO2 assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations A review”. Appl. Catal. B Environ. vol. 49, pp. 1-14, 2013. DOI: 10.1016/j.apcatb.2003.11.010
[23] M. Loukidou, Karapantsios T.D., Zouboulis, A.I. and Matis, K.A, “Diffusion Kinetic Study of Chromium(VI) Biosorption by Aeromonas caviae. Nd”. Eng. Chem. Res., vol. 43 (7), pp. 1748-1755, 2004. DOI: 10.1021/ie034132n
[24] C. Quiñones, J. Ayala and W. Vallejo, “Methylene blue photoelectrodegradation under UV irradiation on Au/Pd-modified TiO2 films”. Appl. Surf. Sci. vol. 257, pp. 367-371, 2010. DOI: 10.1016/j.apsusc.2010.06.079
[25] P. Zucca, C. Vinci, F. Sollai, A. Rescigno and E. Sanjust, “Degradation of Alizarin Red S under mild experimental conditions by immobilized 5,10,15,20-tetrakis(4-sulfonatophenyl)porphine–Mn(III) as a biomimetic peroxidase-like catalyst”. J. Mol. Cat. A: Chem. vol. 288 (1-2), pp. 97-102, 2008. DOI: 10.1016/j.molcata.2008.04.001