Virtual environment for the design of position trajectory tracking controllers of remotely operated vehicles

  • David Javier Muñoz-Aldana Universidad del Cauca. Escuela Naval de Cadetes Almirante Padilla
  • Carlos Alberto Gaviria-López Universidad del Cauca
Keywords: LQR Control, virtual environments, ROV, MATLAB, MSC. ADAMS, Co-simulation, Horizontal Navigation

Abstract

This article presents a virtual environment based on co-simulation between MatLab and MSC Adams, allowing simulation, analysis, development and validation of control strategies for tracking of position trajectories of a Remotely Operated Vehicle (ROV). The simulation results in the horizontal plane show that it is possible, in an uncomplicated way, to construct a virtual environment, which allows observing realistic movements when the forces exerted on an ROV are provided. Taking advantage of the properties of co-simulation, the experiences in this work show that this simulation strategy is very suitable for analysis purposes and control design, allowing researchers and professionals the wide use of control tools available in MATLAB for this end. In this work, a robust linear quadratic regulator (LQR) with integral action has been used to evaluate the performance of the proposed virtual environment for tracking of position trajectories. To validation purposes, widely used trajectories in naval study designs were employed such as the Zig -Zag shaped and the Circular shaped trajectories. Simulation results show that the integration of both, MatLab and MSC Adams, effectively addressees the problem of evaluation of performance of control strategies in the virtual environment. The presented approach allows gaining experience about the challenges of this kind of control problems, before dealing with the complex aspects of tuning in real experimental environments, avoiding losses and cost overruns for underwater robotics projects.

Downloads

Download data is not yet available.

References

[1] A. Atyabi, S. MahmoudZadeh, and S. Nefti-Meziani, Current advancements on autonomous mission planning and management systems: An AUV and UAV perspective. Annual Reviews in Control, vol. 46, pp. 196-215, 2018. DOI: 10.1016/j.arcontrol.2018.07.002.

[2] Z. Zeng, L. Lian, K. Sammut, F. He, Y. Tang, and A. Lammas, A survey on path planning for persistent autonomy of autonomous underwater vehicles. Ocean Engineering, vol. 110, pp. 303-313, 2015. DOI: 10.1016/j.oceaneng.2015.10.007.

[3] N. Crasta, D. Moreno-Salinas, A.M. Pascoal, and J. Aranda, Multiple autonomous surface vehicle motion planning for cooperative range-based underwater target localization. Annual Reviews in Control, vol. 46, pp. 326-342, 2018. DOI: 10.1016/j.arcontrol.2018.10.004.

[4] C. Valencia, and M. Dutra, Estado del arte de los vehículos Autonomos sumergibles alimentados por Energía Solar. Revista Iteckne, vol. 7, pp. 46-53, 2010. DOI: 10.15332/iteckne.v7i1.348.

[5] O. Matsebe, C.M. Kumile, and N.S. Tlale, A review of virtual simulators for autonomous underwater vehicles (auvs). IFAC Proceedings Volumes, vol. 41(1), pp. 31-37, 2008. DOI: 10.3182/20080408-3-IE-4914.00007.

[6] D. Hroncová, I. Delyová, and P. Frankovský, Kinematic analysis of mechanisms using MSC Adams. Applied Mechanics & Materials, vol. 611, pp. 83-89, 2014. DOI: 10.4028/www.scientific.net/AMM.611.83.

[7] D. Sosa-Méndez, R.A. García-García, E. Lugo-González, and M. Arias-Montiel, Análisis cinemático directo de un robot paralelo planar 4RPR mediante ADAMS. In Memorias del Tercer Congreso Internacional sobre Tecnologías Avanzadas de Mecatrónica, Diseño y Manufactura (AMDM2016), Santiago de Cali, Colombia, Abril, 2016.

[8] D. Sosa-Méndez, R.A. García-García, E. Lugo-González, and M. Arias-Montiel, ADAMS-MATLAB co-simulation for kinematics, dynamics, and control of the Stewart–Gough platform. International Journal of Advanced Robotic Systems, vol. 14(4), 2017. DOI: 10.1177/1729881417719824.

[9] F. Cheraghpour, M. Vaezi, H.S. Jazeh, and S.A. Moosavian, Dynamic modeling and kinematic simulation of Stäubli© TX40 robot using MATLAB/ADAMS co-simulation. In Mechatronics (ICM), 2011 IEEE International Conference on Mechatronics, pp. 386-391, 2011. DOI: 10.1109/ICMECH.2011.5971316.

[10] K. Emad, ROV, designed on solidworks 2015 rendered on keyshot 5.64. [Online]. Egypt: grabcad. [consult: 1 October 2017] 2016. Available at: https://grabcad.com/library/rov-16

[11] Guide, Getting Started Using Adams/Controls, mscsoftware, [Online]. 2011. Available at: https://research.utep.edu/Portals/1107/Getting%20Started%20Using%20ADAMS%20Controls.pdf

[12] B.O. Arnesen, Motion control systems for ROVs. Master’s thesis in marine cybernetics, Norwegian University of Science and Technology (NTNU), Department of Marine Technology, pp. 47-58, 2016.

[13] W.A. Ramirez, Z.Q. Leong, H. Nguyen, and S.G. Jayasinghe, Non-parametric dynamic system identification of ships using multi-output Gaussian Processes. Ocean Engineering, vol. 166, pp. 26-36, 2018. DOI: 10.1016/j.oceaneng.2018.07.056.

[14] S. Duman, and S. Bal, Prediction of the turning and zig-zag maneuvering performance of a surface combatant with URANS. Ocean systems engineering-an international journaL, vol. 7(4), pp. 435-460, 2017. DOI: 10.12989/ose.2017.7.4.435.

[15] M.A. Hinostroza, X. Haitong, and C. Guedes-Soares, Experimental and numerical simulations of zig-zag manoeuvres of a self-running ship model. Maritime Transportation and Harvesting of Sea Resources, Guedes Soares, C. & Teixeira A.P. (Eds.), Taylor & Francis Group, London, UK, pp. 563-570, 2017. ISBN 978-0-8153-7993-5.

[16] Guidance and Control of Vehicles (T. I. Fossen), lecture Notes TTK 4190, Department of Engineering Cybernetics, Norwegian University of Science and Technology (NTNU), October 2018.

[17] F. Benetazzo, G. Ippoliti, S. Longhi, and P. Raspa, Advanced control for fault-tolerant dynamic positioning of an offshore supply vessel. Ocean Engineering, vol. 106, pp. 472-484, 2015. DOI: 10.1016/j.oceaneng.2015.07.001.

[18] G.I. Bitar, Towards the Development of Autonomous Ferries. Master of Science in Cybernetics and Robotics, Norwegian University of Science and Technology (NTNU), Department of Marine Technology, 2017.

[19] J. Uria-Rojas, Herramienta de Simulación Marina MSS. Tesis presentada en opción al grado de Ingeniero en Automática, Universidad Central” Marta Abreu” de Las Villas, Facultad de Ingeniería Eléctrica, 2015.

[20] M.P. de la Portilla, A.L. Piñeiro, J.A.S. Sánchez, and R.M. Herrera, Modelado dinámico y control de un dispositivo sumergido provisto de actuadores hidrostáticos. Revista Iberoamericana de Automática e Informática Industrial, vol. 15(1), pp. 12-23, 2017. DOI: 10.4995/riai.2017.8824
Published
2019-12-16
How to Cite
Muñoz-Aldana, D., & Gaviria-López, C. (2019). Virtual environment for the design of position trajectory tracking controllers of remotely operated vehicles. ITECKNE, 16(2), 157-167. https://doi.org/https://doi.org/10.15332/iteckne.v16i2.2358
Section
Research and Innovation Articles