Thermomechanical response of a viscoelastic Ni-Ti – Shape Memory Alloy composite beam

  • Diego Andrés Campo-Ceballos Corporación Universitaria Comfacauca Popayán
  • Emanuelle Pacheco Rocha-Lima Universidade de Brasília
  • Flaminio Levy-Neto Universidade de Brasília
Keywords: Adaptative composite beams, vibration control, NITINOL

Abstract

This investigation is concerned with the mechanical behavior of Shape Memory Alloy Hybrid Composite Beams (SMAHC), that consist of a circular bar of NiTi alloy incorporated in a 500 mm long cylindrical pipe of polypropylene (PP), with external diameter 50 mm and nominal wall thickness 7 mm, wound with a nylon/epoxy layer. The Ni-Ti alloy was characterized using: scanning electron microscopy (SEM); X-ray diffraction (XRD) and Differential thermal analysis (DSC). The nominal chemical composition of the alloy is 50.05 %Ni / 49.95%Ti, and the softer martensite is the predominant phase at room temperature. The approximate martensite (M) to Austenitic (A) phase transformation temperatures were Mstart = 32°C, Mfinal = 46°C, Astart = 38 °C and Afinal = 60°C. For temperature T<Mfinal, Ni-Ti bar presents 100% martensitic phase, whereas for T>Afinal it is fully converted in the Austenitic phase; and its elasticity modulus increases by a factor up to three times. This significant change in stiffness of Ni-Ti, without changing its mass, has motivated the application of such alloy in machine vibration control. The SMAHC beams were subjected to static three-point bending tests, in the elastic regime. Experimental results showed that, in average, at 21°C, the PP pipes effective flexural elastic modulus increased 112%, from 757 MPa to 1609 MPa, when the Ni-Ti bar and the external layer of nylon/epoxy were incorporated to the PP pipe, creating a smart beam. These last results indicate that the SMAHC beam can work as an adaptative structure.

Downloads

Download data is not yet available.

References

[1] Srinivasan, A.V. and McFarland, M.D., Smart Structures Analysis and Design. Cambridge University Press, 2001. https://doi.org/10.1088/0957-0233/13/9/710

[2] Turner, T.L., Thermomechanical Response of Shape Memory Alloy Hybrid Composites. NASA Technical Memorandum. NASA/TM-2001-210656, Langley Research Center, Hampton, 2001.

[3] Otsuka, K., Ren, X. Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater. Sci., 50(5), 511–678.2005. https://doi.org/10.1016/j.pmatsci.2004.10.001

[4] Zak, A.J.; Cartmell, M.P.; Ostachowicz, W. M., Dynamics and control of a rotor using an integrated SMA/composite active bearing actuator. Key Engineering Materials, Switzerland, v. 245-246, pp. 233-240, 2003. https://doi.org/10.4028/www.scientific.net/KEM.245-246.233

[5] H. González-Acevedo and H. González-Acuña. Diseño de un sistema de control avanzado para regular la velocidad de una turbina de vapor acoplada a un generador DC, Iteckne, vol. 15, no. 1, p. 51, 2018. https://doi.org/10.15332/iteckne.v15i1.1964

[6] ASTM D790-17, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM International, West Conshohocken, PA, 2007, www.astm.org. https://doi.org/10.1520/D0790-17

[7] Mendonça, P.T.R. Materiais Compostos e Estruturas Sanduíche. Editora Manole, São Paulo, 2005 (in Portuguese).

[8] Levy Neto, F, Pardini L.C. Compósitos Estruturais: Ciência e Tecnologia. Blucher. 2ª edição. 2016. (in Portuguese).

[9] Sacco, E., & Artioli, E. Shape Memory Alloy Engineering. Shape Memory Alloy Engineering (pp. 141–192). 2015. Elsevier. https://doi.org/10.1016/B978-0-08-099920-3.00006-1

[10] Guo, Y., Klink, A., Fu, C., & Snyder, J. Machinability and surface integrity of Nitinol shape memory alloy. CIRP Annals - Manufacturing Technology, 62(1), 83–86. 2013. https://doi.org/10.1016/j.cirp.2013.03.004

[11] Yuan B., Chung C.Y., M. Zhu. Microstructure and martensitic transformation behavior of porous Ni-Ti shape memory alloy prepared by hot isostatic pressing processing. Materials Science and Engineering A 382 p181–187.2004. https://doi.org/10.1016/j.msea.2004.04.068

[12] Frederick E. Wang, V - Nitinol; A Metal-Alloy with Memory, In Bonding Theory for Metals and Alloys, Elsevier, Amsterdam, 2005, Pages 109-152, ISBN 9780444519788, https://doi.org/10.1016/B978-044451978-8/50008-8

[13] Kłaput, J. Studies of selected mechanical properties of nitinol – shape memory alloy. Archives of foundry engineering, 10(3), 155–158. 2010.

[14] P. Faluhelyi, F. Levy-Neto, E. P. da Silva, and M. V. C. Sá. Comportamento termoelástico de vigas SMAHC sob flexão em duas temperaturas. Rev. Mater., vol. 18, no. 4, pp. 1491–1500, 2013. http://dx.doi.org/10.1590/S1517-70762013000400010

[15] P. V. Muterlle et al. Effect of Aging Treatment on Phase Transformation of a Pseudoelastic NiTi Alloy. Advanced Materials Research, Vol. 936, pp. 1216-1223, 2014. https://doi.org/10.4028/www.scientific.net/AMR.936.1216

[16] J. J. Gil-Peláez and L. Suárez. Factor de pérdida global en estructuras de acero con amortiguadores viscoelásticos mediante ecuaciones de estado. Iteckne, vol. 13, no. 2, p. 146, 2016. https://doi.org/10.15332/iteckne.v13i2.1479

[17] M. Shariyat, A. Mozaffari, and M. H. Pachenari. Damping sources interactions in impact of viscoelastic composite plates with damping treated SMA wires, using a hyperbolic plate theory. Appl. Math. Model., vol. 43, pp. 421–440, 2017. https://doi.org/10.1016/j.apm.2016.11.028

[18] X. Zhao, T. Chen, and S. Wang. Effect of NiTi content and test temperature on mechanical behaviors of NiTi–PU composites. Int. J. Light. Mater. Manuf., vol. 1, no. 4, pp. 215–218, 2018. https://doi.org/10.1016/j.ijlmm.2018.09.003
Published
2019-12-16
How to Cite
Campo-Ceballos, D., Pacheco Rocha-Lima, E., & Levy-Neto, F. (2019). Thermomechanical response of a viscoelastic Ni-Ti – Shape Memory Alloy composite beam. ITECKNE, 16(2), 118-125. https://doi.org/https://doi.org/10.15332/iteckne.v16i2.2355
Section
Research and Innovation Articles