Optimal overhead distribution network planning based graph theory

  • Esteban Bladimir Herrera-Cisneros Universidad Politécnica Salesiana
  • Esteban Mauricio Inga-Ortega Universidad Politécnica Salesiana
Keywords: Optimization, optimal planning, electrical distribution network, minimum Steiner tree, transformers

Abstract

The paper presents a model for optimizes the resources used in the overhead distribution network planning, which allows the deployment of transformers considering coverage and capacity of them. It shows a routing model of the media voltage network based of minimum Steiner tree to find the best route in a geo-referenced area. The planning has been made over a geo-referenced scenery with data from OpenStreetMap platform, with the purpose of locations the transformers and the topology of the net area real. Results imply a starting point for electricity distribution companies to establish work plans for de expansion and planning of the electricity distribution network considering the variability at the demand present.

Downloads

Download data is not yet available.

Author Biographies

Esteban Bladimir Herrera-Cisneros, Universidad Politécnica Salesiana

Ingeniero electricista. Universidad Politécnica Salesiana. Quito, Ecuador

Esteban Mauricio Inga-Ortega, Universidad Politécnica Salesiana

Ph.D. en Ingeniería. Universidad Politécnica Salesiana. Quito, Ecuador.

References

[1] K. Lin, X. Jing, Z. Hengjun, and W. Beibei, “Planning Method for Distribution Networks Based on Load Growth Characteristics of the Industry,” CICED, pp. 10-13, 2016.

[2] J. Fletcher, T. Fernando, H. Iu, M. Reynolds, and S. Fani, “A case study on optimizing an electrical distribution network using a genetic algorithm,” 2015 IEEE 24th Int. Symp. Ind. Electron, pp. 20-25, 2015.

[3] G. A. Jiménez-Estevez, L. S. Vargas, and R. Palma-Behnke, “An evolutionary approach for the greenfield planning problem in distribution networks,” IEEE Int. Conf. Neural Networks - Conf. Proc., pp. 1744-1749, 2007.

[4] V. Dumbrava, P. Ulmeanu, P. Duquenne, C. Lazaroiu, and M. Scutariu, “Expansion planning of distribution networks by heuristic algorithms,” Proc. Univ. Power Eng. Conf., 2010.

[5] E. G. Carrano, F. G. Guimarães, R. H. C. Takahashi, O. M. Neto, and F. Campelo, “Electric distribution network expansion under load-evolution uncertainty using an immune system inspired algorithm,” IEEE Trans. Power Syst., vol. 22, no. 2, pp. 851-861, 2007.

[6] D. Deka, M. Chertkov, and S. Backhaus, “Structure Learning in Power Distribution Networks,” IEEE Trans. Control Netw. Syst., vol. 5870, no. c, pp. 1-1, 2017.

[7] R. M. Capelini et al., “Methodology for Fast Location in Overhead Distribution Networks by Application of Temporary Georeferenced Fault Indicators,” 2016 IEEE Int. Conf. High Volt. Eng. Appl., pp. 6-9, 2016.

[8] J. F. Gómez et al., “Ant colony system algorithm for the planning of primary distribution circuits,” IEEE Trans. Power Syst., vol. 19, no. 2, pp. 996-1004, 2004.

[9] K. E. Antoniadou-Plytaria, N. C. Koutsoukis, E. S. Sergaki, and P. S. Georgilakis, “Multiyear power distribution planning considering voltage regulator placement,” IET Conf. Publ., vol. 2016, no. CP711, pp. 1-6, 2016.

[10] A. Samui, S. Singh, T. Ghose, and S. R. Samantaray, “A Direct Approach to Optimal Feeder Routing for Radial Distribution System,” IEEE Trans. Power Deliv., vol. 27, no. 1, pp. 253-260, 2012.

[11] V. F. Martins and C. L. T. Borges, “Active Distribution Network Integrated Planning Incorporating Distributed Generation and Load Response Uncertainties,” IEEE Trans. Power Syst., vol. 26, no. 4, pp. 2164-2172, 2011.

[12] M. Campaña, E. Inga, and R. Hincapié, “Optimal placement of universal data aggregation points for smart electric metering based on hybrid wireless,” CEUR Workshop Proc., vol. 1950, pp. 6-9, 2017.

[13] R. Wang et al., “A Graph Theory Based Energy Routing Algorithm in Energy Local Area Network,” IEEE Trans. Ind. INFORMATICS, vol. 13, no. 6, pp. 3275-3285, 2017.

[14] Y. Chen, S. Wang, J. Yu, W. Li, X. Shi, and W. Yang, “Optimal Weighted Voronoi Diagram Method of Distribution Network Planning Considering City Planning Coordination Factors,” 2017 4th Int. Conf. Syst. Informatics, no. Icsai, pp. 335-340, 2017.

[15] H. Chunguang et al., “Distribution network island separation with distributed generation (DG) based on dynamic planning,” Proc. 2017 IEEE 2nd Adv. Inf. Technol. Electron. Autom. Control Conf. IAEAC 2017, pp. 1767-1771, 2017.

[16] J. Lichtinghagen, M. Sieberichs, A. Moser, and A. Kübler, “Medium voltage network planning considering the current network and geographical restrictions,” 2017 6th Int. Conf. Clean Electr. Power Renew. Energy Resour. Impact, ICCEP 2017, pp. 689-693, 2017.

[17] E. Díaz-Dorado, J. Cidrás, and E. Míguez, “Application of evolutionary algorithms for the planning of urban distribution networks of medium voltage,” IEEE Trans. Power Syst., vol. 17, no. 3, pp. 879-884, 2002.

[18] A. Peralta, E. Inga, and R. Hincapié, “Optimal Scalability of FiWi Networks Based on Multistage Stochastic Programming and Policies,” J. Opt. Commun. Netw., vol. 9, no. 12, p. 1172, 2017.

[19] E. Inga, S. Céspedes, R. Hincapié, and A. Cárdenas, “Scalable Route Map for Advanced Metering Infrastructure Based on Optimal Routing of Wireless Heterogeneous Networks,” IEEE Wirel. Commun., vol. 24, no. April, pp. 1-8, 2017.

[20] J. Naor, D. Panigrahi, and M. Singh, “Online node-weighted Steiner tree and related problems,” Proc. - Annu. IEEE Symp. Found. Comput. Sci. FOCS, pp. 210–219, 2011.

[21] X. Han, J. Liu, D. Liu, Q. Liao, J. Hu, and Y. Yang, “Distribution network planning study with distributed generation based on Steiner tree model,” 2014 IEEE PES Asia-Pacific Power Energy Eng. Conf., vol. 1, pp. 1-5, 2014.

[22] L. P. Zhang, Z. X. Yang, Q. Y. He, and D. M. Cai, “Immune algorithm for minimal Steiner tree problems,” Int. Conf. Adv. Mechatron. Syst. ICAMechS, vol. 2017, Decem, pp. 110-115, 2018.

[23] C. Wang, H. Liang, X. Geng, and M. Zhu, “Multi-sensor fusion method using kalman filter to improve localization accuracy based on android smart phone,” 2014 IEEE Int. Conf. Veh. Electron. Safety, ICVES 2014, pp. 180-184, 2015.
Published
2018-12-07
How to Cite
Herrera-Cisneros, E., & Inga-Ortega, E. (2018). Optimal overhead distribution network planning based graph theory. ITECKNE, 15(2), 122-130. https://doi.org/https://doi.org/10.15332/iteckne.v15i2.2073
Section
Research and Innovation Articles