Advanced controller design for speed control in a steam turbine coupled to DC generator

  • Hernando González-Acevedo Universidad Autónoma de Bucaramanga
  • Hernan González-Acuña Universidad Autónoma de Bucaramanga
Keywords: Steam turbine, DC generator, LQG control, DMPC control

Abstract

The paper presents the methodology for the design of two control strategies, LQG (Linear-Quadratic-Gaussian Control) and DMPC (Discrete Time Model Predictive Control), for speed control in a steam turbine coupled to separately excited DC generator. The dynamics of the system is represented by a linear model in which the model parameters are calculated using an optimization algorithm. The control strategies were implemented on a distributed control system (DCS), Delta V. The goal is to maintain the speed constant despite the variation of pressure in the steam pipeline and changes in the field resistance of the DC generator.

Downloads

Download data is not yet available.

Author Biographies

Hernando González-Acevedo, Universidad Autónoma de Bucaramanga
M.Sc. en Ingeniería Universidad Autónoma de Bucaramanga, Bucaramanga
Hernan González-Acuña, Universidad Autónoma de Bucaramanga
M.Sc. en Ingeniería, Universidad Autónoma de Bucaramanga, Bucaramanga

References

[1] Ç.L. Hubka y P. Skolnik, “Steam turbine and steam reheating simulation model”. International Conference on Process Control, Junio, 2003. DOI: 10.1109/PC.2013.6581378


[2] P. Jiang, L. Gao y Y. Dai, “A new non-linear model of steam turbine unit for dynamic analysis of power system”. International Conference on Power System Technology, Octubre, 2010. DOI: 10.1109/POWERCON.2010.5666735

[3] G. Han, L. Chen, J. Shao y Z. Sum, “Study of fuzzy PID controller for industrial steam turbine governing system”. International Symposium on Communications and Information Technology, Octubre, 2005. DOI: 10.1109/ISCIT.2005.1567100

[4] I. Mohamed, “Adaptation of PID controller using AI technique for speed control of isolated steam turbine”. Conference on Electronics, Communications and Computers, Marzo, 2012. DOI: 10.1109/JECECC.2012.6186962

[5] H. Reza y R. Mohseni, “Generalized Model Predictive Control for a Multivariable Boiler- Turbine Unit”. 11th International Conference on Control, Automation and Systems, Octubre, 2011. ISSN: 2093-7121.

[6] M. Kordestani, M. Soleimani y A. Mirzaee, “Predictive control of large steam turbines”. 9th Asian Control Conference, Junio, 2013. DOI: 10.1109/ASCC.2013.6606366

[7] B. Codrons, “LQG control of steam temperature in power plants”. European Control Conference, Septiembre, 2003. Print ISBN: 978-3-9524173-7-9.

[8] M. Dulau y D. Bica, “Mathematical modelling and simulation of the behavior of the steam turbine”. 7th International Conference Interdisciplinarity in Engineering, Octubre, 2013. DOI: 10.1016/j.protcy.2013.12.555

[9] S. Chapman, Máquinas Eléctricas. McGraw Hill. ISBN 958-600-125-3, Segunda edición, pp. 283-290, 1993.

[10] K. Ogata, Sistemas de control en tiempo discreto. Ed. Pearson Educacion. ISBN 0-13-034281-5, pp. 596-609, 1995.

[11] R. Burns, Advanced Control Engineering. Ed. Butterworth Heinemann. ISBN 0750651008, pp. 288-299, 2001.

[12] X. Lan Li, J. Gyu y H. Shin, “Comparison and evaluation of anti-windup PI Controllers”. Journal of Power Electronics, vol. 11 no. 1, Enero, 2011.

[13] L. Wang, Model Predictive Control System Design and Implementation Using MATLAB. ISBN 978-84882-330-3, pp. 85-142, 2009.
How to Cite
González-Acevedo, H., & González-Acuña, H. (1). Advanced controller design for speed control in a steam turbine coupled to DC generator. ITECKNE, 15(1), 51-62. https://doi.org/https://doi.org/10.15332/iteckne.v15i1.1964
Section
Research and Innovation Articles