Design of support device for rehabilitation therapies to distal level of the fingers of the hand

  • Luz Helena Camargo-Casallas Universidad Distrital “Francisco José De Caldas”
  • Esperanza Camargo-Casallas Universidad Distrital “Francisco José De Caldas”
  • Jeickon Villamil-Matallana Universidad Distrital “Francisco José de Caldas”
Keywords: Positional splint, reverse engineering, rehabilitation

Abstract

In rehabilitation therapies of hand’s fingers, are developed exercises that involve effort to improve the function of movement using strength and muscle endurance for this objective. This paper presents the design of support device for rehabilitation therapies to distal level of the fingers of the hand, which includes a positional splint, an electronic device and monitoring software through a graphical user interface. The positional splint allows to place the hand and fingers in physiological rest position, in order to obtain measurements of force; this splint was first manufactured using traditional methods and then through a process of reverse engineering was scanned for its subsequent reconstruction. The electronic prototype provided information about the force applied during the therapies carried out at distal fingers of the hand level. The developed device allows supporting the realization of physical therapies at distal fingers of the hand level, and decreases the variability among different specialists in the area.

Downloads

Download data is not yet available.

Author Biographies

Luz Helena Camargo-Casallas, Universidad Distrital “Francisco José De Caldas”
M.Sc. en Ingeniería Biomédica, Universidad Distrital “Francisco José De Caldas”, Bogotá
Esperanza Camargo-Casallas, Universidad Distrital “Francisco José De Caldas”
Ph.D. en Ingeniería, Universidad Distrital “Francisco José De Caldas”, Bogotá
Jeickon Villamil-Matallana, Universidad Distrital “Francisco José de Caldas”
Ingeniero Electrónico, Universidad Distrital “Francisco José de Caldas”, Bogotá

References

[1] Ayuso, D.M.R., “Actividades de la vida diaria”, Anales de psicología, vol 23, no. 2, pp. 264-271, 2007.

[2] C. Torres, J. Hernández y D. Castañeda, “Manejo inicial de las lesiones de punta de dedo: guía de tratamiento basado en la experiencia en el Hospital San José (91 casos)”. Revista de la Facultad de Medicina de la Universidad Nacional de Colombia, vol. 62, no. 3, pp. 355-362, 2014.

[3] C. Chick, Acute and Chronic Finger Injuries in Ball Sports, Philippe Landreau (ed. series). Ed. Springer, Francia, 2013, pp. 1-6, ISBN 978-2-8178-0381-4.

[4] D. Rodríguez, Revisión descriptiva de las lesiones más frecuentes durante la práctica del voleibol. PubliCE Standard. [en línea]. Disponible en: http://g-se.com/es/prevencion-y-rehabilitacion-de-lesiones/articulos/revision-descriptiva-de-las-lesiones-mas-frecuentes-durante-la-practica-del-voleibol-1078

[5] L. Gil Santos, J.A. Beltrán Fernández y C. Barrios Pitarque, “Lesiones deportivas de la muñeca y la mano”, Instituto de Investigación en Enfermedades Músculo-Esqueléticas, Facultad de Medicina, Universidad Católica de Valencia San Vicente Mártir, vol. 31, no. 1, pp. 41-50, 2014.

[6] U. Jorgensen, “Epidemiology of injuries in typical Scandinavian team sports”. British Journal of Sports Medicine England, vol. 18, no. 2, pp. 59-63, 1984.

[7] Colliander, Erland, Eriksson, Ejnar, Herkel, Mike, y P. Skold, “Injuries in Swedish elite basketball”. Orthopedic Colorado, vol. 9, no. 2, pp. 225-227, 1986, Denver, USA, DOI: 10.3928/0147-7447-19860201-14.

[8] J. Watkins y B. Green, “Volleyball injuries: a survey of injuries of Scottish National League male players”, British Journal of Sports Medicine England, vol. 26, no. 2, pp. 135-137, 1992.

[9] D. Vicent y D. Bosch, Fracturas de la mano: Falanges y metacarpos. Manual del Residente de C.O. Barcelona, España. [en línea]. Disponible en: http://manualresidentecot.secot.criticsl.com/index.php/es/bloque-iv-miembro-superior/79-fracturas-de-la-mano-falanges-y-metacarpianos.

[10] R. Miralles. Tratamiento fisioterapéutico de las secciones de los tendones flexores. Universitat Rovira i Virgili. Centre de Cooperació al Desenvolupament, URV Solidaria. Tarragona, España. [en línea]. Disponible: http://www.urv.cat/media/upload/arxius/URV_Solidaria/COT/Contenido/Tema_7/7.5.tratamiento_fisioterapeutico_de_les_seccione_de_los_tendones_flexores.pdf

[11] M.M. Martínez, A. Ríos Rincón, La tecnología en rehabilitación: una aproximación conceptual. Revista Ciencias de la Salud, vol 4, no. 2, pp. 98-108. http://www.scielo.org.co/ (2006).

[12] A. Corregidor, C. Moralejo y M. Ávila, Terapia ocupacional en psicogeriatría. V Congreso Virtual de Psiquiatria.com. Disponible: http://www.terapia-ocupacional.com/articulos/Psicogeriatria.shtml.

[13] E. Mejía, J. Mejía, J. Delgado, O. Avilés, y D. Amaya, “Dispositivo transductor para la medición de fuerza y velocidad en una tarea de corte con escalpelo”, Revista EIA, vol. 7, no. 14, pp. 147-160, 2010.

[14] N. Tuttle, y G. Jacuinde, “Design and Construction of a Novel Low-Cost Device to Provide Feedback on Manually Applied Forces”. Orthopaedic & Sports Physical Therapy, vol. 41, no. 3, pp. 174-179, Mar. 2011.

[15] X. Shuai, G. Gogola, G. Sattler, S. Madala y R. Likamwa, “Hand muscle measurement device”, U. S. Patent 2012/0255355 A1, October 11, 2012.

[16] M. Smysee, R. Wiley y T. Harris, “Isometric system, method and apparatus”, Smyser et al. U. S. Patent 6,962,569 B2, noviembre 8, 2005.

[17] H. Cardona, J. Muñoz, “Occupational therapy for people with physical disability using interactive environment”, Springer-Verlag Berlin Heidelberg, 2017.

[18] A. Pineda, “Ergonomía y antropometría aplicada con criterios ergonómicos en puestos de trabajo en un grupo de trabajadoras del subsector de autopartes en Bogotá, D.C. Colombia”. Revista Republicana, no. 2-3, pp. 135-150, Bogotá, Colombia, 2007.

[19] Government consumer safety research, “Strength Data for design safety”, Phase 1, [en línea]. Ed. Department of trade and Industry: Nottingham, Nottinghamshire, England, United Kingdom, 2000, [ref. de 10 noviembre 2015]. Disponible en: http://webarchive.nationalarchives.gov.uk/+/http:/www.dti.gov.uk/files/file21830.pdf

[20] Government consumer safety research, “Strength Data for design safety”. Phase 2, [en línea]. Ed. Department of trade and Industry: Nottingham, Nottinghamshire, England, United Kingdom, 2002, [ref. de 12 noviembre 2015], Disponible en: http://webarchive.nationalarchives.gov.uk/+/http:/www.berr.gov.uk/files/file21827.pdf

[21] M. Edsioglu, “Relative optimum grip span as a function of hand anthropometry”. International Journal of Industrial Ergonomics, vol. 34, no. 2, pp. 1-12, 2004.

[22] K. Changmin, S. Hyojoo, y K. Changwan, “Fully automated registration of 3D data to a 3D CAD model for Project progress monitoring”, Automation in Construction, vol. 35, pp. 587-594, 2013.

[23] Creaform. Metrascan 3D the optical CMM 3D scanners for industrial applications. [en línea]. Disponible: http://www.bibus.sk/fileadmin/editors/countries/bibsk/Suppliers/Creaform/documents/metrascan3d_brochure_en_hq_25062014.pdf

[24] A. Hamid, M. Azmi y M. Azm, “Force Sensor Detection and Performance Evaluation of New Active System Ankle Foot Orthosis”, Procedia Engineering, no. 41, pp. 510-515, 2012.

[25] TEKSCAN Incorporated, Flexoforce® A201 standard force & Load sensors, [en línea], 2009. [ref. de 19 enero 2016], Disponible en: http://www.sgbotic.com/products/datasheets/sensors/DatasheetA201.pdf

[26] TEKSCAN, Incorporated. Flexoforce® Sensors User Manual, [en línea], 2009. [ref. de 19 enero 2016], Disponible en: http://www.advanticsys.com/shop/documents/1322665340_Flexiforce_A201-100l.pdf

[27] V. Giurgiutiu, L. Victor, J. Lyons, D. Rocheleau y W. Liu, “Mechatronics/microcontroller education for mechanical engineering students at the University of South Carolina”, Mechatronics, (South Carolina, USA), no. 15, pp. 1025-1036, 2005.

[28] Freescale Semiconductor, M68HC08 Microcontrollers, [en línea], enero 2007. [ref. de 19 enero 2016], Disponible en: http://cache.freescale.com/files/microcontrollers/doc/data_sheet/MC68HC908AP64.pdf

[29] J.R. Lajara Vizcaino, J. Pelegri Sebastia, LabVIEW. Entorno gráfico de programación. Ed. Marcombo, pp. 372, 2007.

[30] S. Mel’nikov, L. Naumova, E. Panteleeva y E. Sudarikova, “Angle Accuracy Control in Stepping Motors with the Help of the Graphing Program LabView”, Russian Electrical Engineering, vol. 78, no. 2, pp. 90-91, 2007.

[31] Y. Yu, Y. Zhang, X. Yuan y Q. Hou, “A LabVIEW-based real-time measurement system for polarization detection and calibration”, Optik- International Journal for Light and Electron Optics, vol. 125, no. 10, pp. 2256-2260, 2014.
How to Cite
Camargo-Casallas, L., Camargo-Casallas, E., & Villamil-Matallana, J. (1). Design of support device for rehabilitation therapies to distal level of the fingers of the hand. ITECKNE, 15(1), 43-50. https://doi.org/https://doi.org/10.15332/iteckne.v15i1.1963
Section
Research and Innovation Articles