Page Header
DOI: https://doi.org/10.15332/iteckne.v10i1.186

Dinámica estocástica o compleja con información incompleta: una revisión desde el control

Amalia Dávila Gómez, Alejandro Peña Palacio, Paula Andrea Ortiz Valencia, Edilson Delgado Trejos

Abstract - 260 | PDF (Español (España)) - 176 DOC (Español (España)) - 13


Abstract

El control de procesos con dinámica es- tocástica o compleja es exitoso siempre y cuando se pueda estimar un modelo que se ajuste bien al compor- tamiento, sin embargo, esta suposición pierde validez en aplicaciones donde la información del sistema es reducida o incompleta, muy comunes en ambientes reales de la industria. La literatura presenta diferentes esquemas de control, siendo los modelos neuro-difusos los que reportan mejor desempeño. Estos modelos con- jugan la capacidad de adaptación que tienen las redes neuronales con la robustez de los motores de inferencia que tiene la lógica difusa, para modelar el conocimien- to de expertos mediante reglas de aprendizaje, identifi- car dinámicas complejas y aumentar la adaptabilidad del sistema a perturbaciones que en la práctica tien- den a ser de naturaleza estocástica sumado, a veces, que la información del sistema sea restringida. Este artículo presenta una revisión sobre dificultades y solu- ciones derivadas del control de sistemas estocásticos o complejos con información incompleta. Se revisan las estructuras de control cuando la dinámica del sis- tema presenta vaguedad en los datos, la evolución ha- cia técnicas adaptativas, y el desempeño de las redes neuro-difusas ante procesos estocásticos o complejos con incertidumbre en los datos. De forma preliminar se establece que el control de este tipo de sistemas debe estar compuesto por modelos híbridos soportados en rutinas de optimización y análisis probabilístico que garanticen el tratamiento de las incertidumbres sin afectar el desempeño de las estructuras de control y la consistencia en la precisión.


Keywords

Control adaptativo, sistemas estocás- ticos, redes neuronales, lógica difusa, modelos neuro- difusos, información incompleta.

References


W. H. Gao and F. Q. Deng, “Parameter-dependent robust stability for nonlinear distributed delay stochastic systems with polytopic-type uncertainties,” in Proc. 2009 Conference on Machine Learning and Cybernetics, Vol. 6, pp. 3684-3689.

A. Hossain, Z. A. Choudhury and S. Suyut, “Statistical Process Control of an Industrial Process in Real Time,” IEEE Transactions on Industry Applications, Vol. 32, No. 2, pp. 243-249, Apr. 1996.

P. Liu and H. Li, “Approximation of stochastic processes by T-S fuzzy systems,” Fuzzy Sets and Systems, Vol. 155, No. 2, pp. 215-235, Oct. 2005.

A. Toola, “The safety of process automation,” Automatica, Vol. 29, No. 2, pp. 541-548, Mar. 1993.

J. C. Rodríguez-Gamboa, E. S. Albarracín and E. Delgado-Trejos, “Quality Control Through Electronic Nose System,” in Modern Approaches to Quality Control, A. B. Eldin, Ed., Rijeka Croatia: InTech, 2011, pp. 505-522.

K. L. Hsieh, L. I. Tong and M. C. wang, “The application of control chart for defects and defect clustering in IC manufacturing based on fuzzy theory,” Expert Systems with Applications, Vol.32, No. 3, pp. 765-776, Apr. 2007.

R. Del-Hoyo, B. Del-Brío, N. Medrano and J. Fernández, “Computational intelligence tools for next generation quality of service management,” Neurocomputing, Vol. 72, No. 16-18, pp. 3631-3639, Oct. 2009.

Y. V. Pehlivanoglu and O. Baysal, “Vibrational genetic algorithm enhanced with fuzzy logic and neural networks,” Aerospace Science and Technology, Vol. 14, No. 1, pp. 56-64, 2012.

I. S. Baruch, R. Beltran, J. L. Olivares and J. M. Flores, “A fuzzy-neural multi-model for nonlinear systems identification and control,” Fuzzy Sets and Systems, Vol. 159, No. 20, pp. 2650-2667, Oct. 2008.

J. Sanz, A. Fernández, H. Bustince and F. Herrera, “A genetic tuning to improve the performance of Fuzzy Rule-Based Classification Systems with Interval-Valued Fuzzy Sets: Degree of ignorance and lateral position,” International Journal of Approximate Reasoning, Vol. 52, No. 6, pp. 751-766, Sep. 2011.

V. Novák, “Reasoning about mathematical fuzzy logic and its future,” Fuzzy Sets and Systems, Vol. 192, No. 1, pp. 25-44, Apr. 2012.

N. R. Abburi and U. S. Dixit, “A knowledge-based system for the prediction of surface roughness in turning process,” Robotics and Computer-Integrated Manufacturing, Vol. 22, No. 4, pp. 363-372, Aug. 2006.

F. Villada, E. García and J. D. Molina, “Electricity Price Forecasting using Neuro-Fuzzy Networks,” Información Tecnológica, Vol. 22, No. 6, pp. 111-120, 2011.

P. M. Marusak, “Advantages of an easy to design fuzzy predictive algorithm in control systems of nonlinear chemical reactors,” Applied Soft Computing, Vol. 9, No. 3, pp. 1111-1125, Jun. 2009.

L. Naderloo, R. Alimardani, M. Omid, F. Sarmadian, P. Javadikia, M. Y. Torabi, and F. Alimardani, “Application of ANFIS to predict crop yield based on different energy inputs,” Measurement, Vol. 45, No. 6, pp. 1406- 1413, Jul. 2012.

T. Takagi and M. Sugeno “Fuzzy identification of systems and its application to modeling and control,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 15, No. 1, pp. 116-132, Jan. 1985.

A. Zhang, “Robust Reliable Fuzzy Control for Uncertain Markovian Jump Singular Systems,” in Proc. 5th Int. Conf. Fuzzy Systems and Knowledge Discovery (FSKD’08), Vol. 1, pp. 406-410, Oct. 2008.

H. X. Li and Z. Liu, “A Probabilistic Fuzzy Logic System: learning in the stochastic environment with incomplete dynamics,” in Proc. 2009 IEEE Int. Conf. Systems, Man and Cybernetics (SMC’09), pp. 383-388.

S. Ushida, “Control performance improvements due to fluctuations in dynamics of stochastic control systems,” in Proc. 50th IEEE Conf. on Decision and Control and European Control Conf. (CDC-ECC’11), pp. 1430-1436, 2011.

H. Yang and L. Sheng, “Robust stability of uncertain stochastic fuzzy cellular neural networks,” Neurocomputing, Vol. 73, No. 1-3, pp. 133–138, Dec. 2009.

T. Shibata, “The impacts of uncertainties in a real options model under incomplete information,” European Journal of Operational Research, Vol. 187, No. 3, pp. 1368-1379, Jun. 2008.

S. K. Mitter, “Filtering and stochastic control: A historical perspective,” IEEE Control Systems, Vol. 16, No. 3, pp. 67-76, Jun. 1996.

P. Dorato, “A historical review of robust control,” IEEE Control Systems Magazine, Vol. 7, No. 2, pp. 44-47, Apr. 1987.

J. Zhou and B. Liu, “New stochastic models for capacitated location-allocation problem,” Computers & Industrial Engineering, Vol. 45, No. 1, pp. 111-125, Jun. 2003.

L. Xu, J. Wang and Q. Chen, “Kalman filtering state of charge estimation for battery management system based on a stochastic fuzzy neural network battery model,” Energy Conversion and Management, Vol. 53, No. 1, pp. 33-39, Jan. 2012.

H. Li, and Z. Liu, “A Probabilistic Neural-Fuzzy Learning System for Stochastic Modeling,” IEEE Transactions on Fuzzy Systems, Vol. 16, No. 4, pp. 898-908, Aug. 2008.

Z. Chen, L. Zhao and K. Lee, “Environmental risk assessment of offshore produced water discharges using a hybrid fuzzy-stochastic modeling approach,” Environmental Modelling & Software, Vol. 25, No. 6, pp. 782–792, Jun. 2010.

Z. Liu, H. X. Li, and Y. Zhang, “A Probabilistic Wavelet System for Stochastic and Incomplete Data-Based Modeling,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 38, No. 2, pp. 310-319, Apr. 2008.

F. Carravetta and G. Mavelli, “Suboptimal stochastic linear feedback control of linear systems with state-and control-dependent noise: The incomplete information case,” Automatica, Vol. 43, No. 5, pp. 751-757, May. 2007.

Z. W. Gong, “Least-square method to priority of the fuzzy preference relations with incomplete information,” International Journal of Approximate Reasoning, Vol. 46, No. 2, pp. 258-264, Feb. 2008.

V. A. Akpan and G. D. Hassapis, “Nonlinear model identification and adaptive model predictive control using neural networks,” ISA Transactions, Vol. 50, No. 2, pp. 177-194, Apr. 2011.

G. Stein and G. N. Saridis, “A parameter-adaptive control technique,” Automatica, Vol. 5, No. 6, pp. 731- 739, Nov. 1969.

K. K. Tan, T. H. Lee and X. Jiang, “Robust on-line relay automatic tuning of PID control systems,” ISA Transactions, Vol. 39, No. 2, pp. 219-232, Apr. 2000.

Y. Lim, R. Venugopal and A. G. Ulsoy, “Auto-tuning and adaptive control of sheet metal forming,” Control Engineering Practice, VOL. 20, No. 2, pp. 156-164, Feb. 2012.

R. Hoskinson, K. Van den Doel and S. Fels, “Realtime adaptive control of modal synthesis,” in Proc. 2003 Conf. on New Interfaces for Musical Expression (NIME’03), pp. 99-103.

H. Gu, T. Zhang and Q. Shen, “Decentralized model reference adaptive sliding mode control based on fuzzy model,” Journal of Systems Engineering and Electronics, Vol. 17, No. 1, pp. 182-186, Mar. 2006.

S. Sánchez and E. Giraldo, “Speed control of induction motor using fuzzy recursive least squares technique,” Revista Tecno Lógicas, Vol. 2008, No. 21, pp. 99-111, Dec. 2008.

D. S. Brito, E. Aguiar, F. Lucena, R. C. S. Freire, Y. Yasuda and A. K. Barros, “Influence of low frequency noise in adaptive estimation using the LMS algorithm,” Signal Processing, Vol. 89, No. 5, pp. 933-940, 2009.

Z. Cao, Q. Mu, L. Hu, Y. Liu and L. Xuan, “Improve the loop frequency of liquid crystal adaptive optics by concurrent control technique,” Optics Communications, Vol. 283, No. 6, pp. 946-950, Mar. 2010.

A. S. Silveira, J. E. N. Rodríguez and A. A. R. Coelho, “Robust design of a 2-DOF GMV controller: A direct self-tuning and fuzzy scheduling approach,” ISA Transactions, Vol. 51, No. 1, pp. 13-21, Jan. 2012.

S. Salehi and M. Shahrokhi, “Adaptive fuzzy backstepping approach for temperature control of continuous stirred tank reactors,” Fuzzy Sets and Systems, Vol. 160, No. 12, pp. 1804-1818, Jun. 2009.

J. Che, J. Wang and G. Wang, “An adaptive fuzzy combination model based on self-organizing map and support vector regression for electric load forecasting,” Energy, Vol. 37, No. 1, pp. 657-664, Jan. 2012.

K. J. Åström, “Theory and applications of adaptive control –A survey,” Automatica, Vol. 19, No. 5, pp. 471- 486, Sep. 1983.

R. E. Kalman, “Design of a self-optimizing control system,” Transactions of the American Society of Mechanical Engineers, Vol. 80, pp. 468–478, Sep. 1958.

K. J. Åström and B. Wittenmark, “On self-tuning regulators,” Automatica, vol. 9, no. 2, pp.185-199, Mar. 1973.

A. Navia and R. Díaz, “Adaptive sigmoidal plant identification using reduced sensitivity recursive least squares,” Signal Processing, Vol. 91, No. 4, pp. 1066-1070, Apr. 2011.

W. Wang and B. Tang, “A fuzzy adaptive method for intelligent control,” Expert Systems with Application, Vol. 16, No. 1, pp. 43-48, Jan. 1999.

B. F. Wu, L. S. Ma, J. W. Perng and H. I. Chin, “Absolute stability analysis in uncertain static fuzzy control systems with the parametric robust Popov criterion,” in Proc. 2008 IEEE Int. Conf. Fuzzy Systems (FUZZIEEE’08), pp. 1325-1330.

K. S. Narendra and Z. Han, “Location of models in multiple-model based adaptive control for improved performance,” in Proc. 2010 American Control Conference (ACC’10), pp. 117-122.

H. Han, C. Y. Su and Y. Stepanenko, “Adaptive control of a class of nonlinear systems with nonlinearly parameterized fuzzy approximators,” IEEE Transactions on Fuzzy Systems, Vol. 9, No. 2, pp. 315-323, Apr. 2001.

A. Loria and A. Zavala, “Adaptive tracking control of chaotic systems with applications to synchronization,” IEEE Transactions on Circuits and Systems I, Regular Papers, Vol. 54, No. 9, pp. 2019-2029, Sep. 2007.

Y. G. Leu, W. Y. Wang and T. T. Lee, “Robust adaptive fuzzy-neural controllers for uncertain nonlinear systems,” IEEE Transactions on Robotics and Automation, Vol. 15, No. 5, pp. 805-817, Oct. 1999.

C. F. Hsu, “Self-organizing adaptive fuzzy neural control for a class of nonlinear systems,” IEEE Transactions on Neural Networks, Vol. 18, No. 4, pp. 1232-1241, Jul. 2007.

C. S. Chen and H. H. Chen, “Robust adaptive neuralfuzzy-network control for the synchronization of uncertain chaotic systems,” Nonlinear Analysis: Real World Applications, Vol. 10, No. 3, pp. 1466-1479, Jun. 2009.

Y. Gao and M. J. Er, “Online adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems,” IEEE Transactions on Fuzzy Systems, Vol. 11, No. 4, pp. 462-477, Aug. 2003.

S. Wang, L. Hou, L. Dong and H. Xiao, “Adaptive fuzzy sliding mode control of uncertain nonlinear SISO systems,” Procedia Engineering - International Conference on Advances in Engineering, Vol. 24, pp. 33-37, 2011.

Y. Wang, J. Song and B. Zhang, “Fuzzy Sliding-Mode Variable Structure Control for Fan Filter Units’ Motor Speed Regulation System,” Procedia Engineering – CEIS2011, Vol. 15, pp. 969-973, Aug. 2011.

A. Meharrar, M. Tioursi, M. Hatti and A. Boudghéne, “A variable speed wind generator maximum power tracking based on adaptative neuro-fuzzy inference system,” Expert Systems with Applications, Vol. 38, No. 6, pp. 7659-7664, Jun. 2011.

J. Javadi-Moghaddam and A. Bagheri, “An adaptive neuro-fuzzy sliding mode based genetic algorithm control system for under water remotely operated vehicle,” Expert Systems with Applications, Vol. 37, No. 1, pp. 647-660, Jan. 2010.

Y. G. Leu, Y. W. Wang and I. H. Li, “RGA-based on line tuning of BMF fuzzy-neural networks for adaptive control of uncertain nonlinear systems,” Neurocomputing, Vol. 72, No. 10-12, pp. 2636-2642, Jun. 2009.

M. Landín, R. C. Rowe and P. York, “Advantages of neurofuzzy logic against conventional experimental design and statistical analysis in studying and developing direct compression formulations,” European Journal of Pharmaceutical Sciences, Vol. 38, No. 4, pp. 325- 331, Nov. 2009.

T. Ensari and S. Arik, “New results for robust stability of dynamical neural networks with discrete time delays,” Expert Systems with Applications, Vol. 37, No. 8, pp. 5925-5930, Aug. 2010.

H. Shao, “Novel delay-dependent stability results for neural networks with time-varying delays,” Circuits, Systems, and Signal Processing, Vol. 29, No. 4, pp. 637-647, Aug. 2010.

F. O. Souza, and R. M. Palhares, “Interval time-varying delay stability for neural networks,” Neurocomputing, Vol. 73, No. 13-15, pp. 2789-2792, Aug. 2010.

J. Tian and X. Zhou, “Improved asymptotic stability criteria for neural networks with interval time-varying delay,” Expert Systems with Applications, VOL. 37, No. 12, pp. 7251-7525, Dec. 2010.

S. Blythe, X. Mao and X. Liao, “Stability of stochastic delay neural networks,” Journal of the Franklin Institute, Vol. 338, No. 4, pp. 481-495, Jul. 2001.

H. Huang and J. Cao, “Exponential stability analysis of uncertain stochastic neural networks with multiple delays,” Nonlinear Analysis: Real World Applications, Vol. 8, No. 2, pp. 646-653, Apr. 2007.

T. W. Huang, “Exponential stability of fuzzy cellular neural networks with distributed delays,” Physics Letters A, Vol. 351, No. 1-2, pp. 48-52, Feb. 2006.

B. Liu and P. Shi, “Delay-range-dependent stability for fuzzy BAM neural networks with time-varying delays,” Physics Letters A, Vol. 373, No. 21, pp. 1830-1838, May. 2009.

X. Y. Lou and B. T. Cui, “Robust asymptotic stability of uncertain fuzzy BAM neural networks with time-varying delays,” Fuzzy Sets and Systems, Vol. 158, No. 24, pp. 2746-2756, Dec. 2007.

H. Li, B. Chen, C. Lin and Q. Zhou, “Mean square exponential stability of stochastic fuzzy Hopfield neural networks with discrete and distributed time-varying delays,” Neurocomputing, Vol. 72, No. 7-9, pp. 2017- 2023, Mar. 2009.

L. Sheng, M. Gao and H. Yang, “Delay-dependent robust stability for uncertain stochastic fuzzy Hopfield neural networks with time-varying delays,” Fuzzy Sets and Systems, Vol. 160, No. 24, pp. 3503-3517, Dec. 2009.

Z. Shu and J. Lam, “Global exponential estimates of stochastic interval neural networks with discrete and distributed delays,” Neurocomputing, Vol. 71, No. 13- 15, pp. 2950-2963, Ago. 2008.

W. Su and Y. Chen, “Global robust exponential stability analysis for stochastic interval neural networks with time-varying delays,” Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 5, pp. 2293-2300, May. 2009.

W. Lin and C. I. Byrnes, “Passivity and absolute stabilization of a class of discrete-time nonlinear systems,” Automatica, Vol. 31, No. 2, pp. 263-267, Feb. 1995.

X. W. Liu, “Passivity analysis of uncertain fuzzy delayed systems,” Chaos, Solitons and Fractals, Vol. 34, No. 3, pp. 833-838, Nov. 2007.

J. Liang, Z. Wang and X. Liu, “Robust passivity and passification of stochastic fuzzy time-delay systems,” Information Sciences, Vol. 180, No. 9, pp. 1725-1737, May. 2010.

J. Fu, H. Zhang, T. Ma and Q. Zhang, “On passivity analysis for stochastic neural networks with interval time-varying delay,” Neurocomputing, Vol. 73, No. 4-6, pp. 795-801, Jan. 2010.

P. Balasubramaniam and G. Nagamani, “Global robust passivity analysis for stochastic fuzzy interval neural networks with time-varying delays,” Expert Systems with Applications, Vol. 39, No. 1, pp. 732-742, Jan. 2012.

M. Syed-Ali and P. Balasubramaniam, “Exponential stability of uncertain stochastic fuzzy BAM neural networks with time-varying delays,” Neurocomputing, Vol. 72, No. 4-6, pp. 1347-1354, Jan. 2009.

A. T. Gumus and A. F. Guneri, “A multi-echelon inventory management framework for stochastic and fuzzy supply chains,” Expert Systems with Applications, Vol. 36, No. 3, pp. 5565–5575, Apr. 2009.

P. Chaves and T. Kojiri “Deriving reservoir operational strategies considering water quantity and quality objectives by stochastic fuzzy neural networks,” Advances in Water Resources, Vol. 30, No. 5, pp. 1329- 1341, May. 2007.

P. Chaves, T. Kojiri and T. Hori, “Stochastic Operation for Multi-purpose Reservoir Using Neuro-Fuzzy Systems,” Annuals of Disas. Prev. Res. Inst., No. 48B, 14pp., 2005.

A. Azadeh, S.M. Asadzadeh, M. Saberi, V. Nadimi, A. Tajvidi and M. Sheikalishahi, “A Neuro-fuzzy-stochastic frontier analysis approach for long-term natural gas consumption forecasting and behavior analysis: The cases of Bahrain, Saudi Arabia, Syria, and UAE,” Applied Energy, vol. 88, No. 11, pp. 3850-3859, Nov. 2011.


Abstract - 260 | PDF (Español (España)) - 176 DOC (Español (España)) - 13

Refbacks

  • There are currently no refbacks.
ISSN: 1692-1798 (impreso)
ISSN: 2393-3483 (en línea)



Imagen