Silver nanostructured platforms for detecting Escherichia coli through Raman scattering spectroscopy “Proof of concept”

  • John Jairo Castillo-León Universidad Industrial de Santander. Bucaramanga, Colombia
  • Bladimiro Rincón-Orozco Universidad Industrial de Santander. Bucaramanga, Colombia
  • Rafael Cabanzo-Hernández Universidad Industrial de Santander. Bucaramanga, Colombia
Keywords: Silver nanostructured platforms, SERS, bacteria, nanotechnology

Abstract

Surface enhanced Raman spectroscopy (SERS) of nanostructured materials is a powerful technique that allows to reach ultrahigh levels of detection of several analytes. In the present study it was possible to identify the bacteria E. coli by using a novel nanostructured platform based on silver-capped nanopillars (AgNP) and SERS technique. AgNPs were fabricated by ion reactive etching and deposition of silver layers. The bacteria culture were prepared in Luria-Bertani (LB) medium at 37° by 4 hours. 5 μL of the bacteria were deposited on top of the surface of AgNPs and let it dry for 30 minutes. Subsequently the AgNP-bacteria system was analysed by Raman spectroscopy. A typical band of E. coli at 731 cm-1 was identified and this Raman vibration was used as a marker peak to detect the bacteria. Finally the novel AgNP could be used as a potential biosensor to detect nosocomial bacteria in intra-hospital environments.

Downloads

Download data is not yet available.

Author Biographies

John Jairo Castillo-León, Universidad Industrial de Santander. Bucaramanga, Colombia
Ph.D. Química. Universidad Industrial de Santander. Bucaramanga, Colombia
Bladimiro Rincón-Orozco, Universidad Industrial de Santander. Bucaramanga, Colombia
Ph.D. Ciencias Naturales. Universidad Industrial de Santander. Bucaramanga, Colombia
Rafael Cabanzo-Hernández, Universidad Industrial de Santander. Bucaramanga, Colombia
M.Sc. Ciencias Naturales. Universidad Industrial de Santander. Bucaramanga, Colombia

References

M.S. Schmidt, J. Hübner, A. Boisen, “Large Area Fabrication of Leaning Silicon Nanopillars for Surface Enhanced Raman Spectroscopy”, Adv Mat; 10, pp. 11-18, 2011.

A.J. Driscoll, M.H. Harpster, P.A. Johnson, “The development of surface-enhanced Raman scattering as a detection modality for portable in vitro diagnostics: progress and challenges”, Phys Chem Phys Chem 2013; 15, pp. 20415-20433. doi: 10.1039/c3cp52334a

W.R. Premasiri, N. Krieger, W.R. Associates, “Characterization of the Surface Enhanced Raman Scattering (SERS) of Bacteria”, J Chem Phys B; 109, pp. 312-320, 2005.

J. Chen, X. Wu, Y. Huang, Y. Zhao, “Chemical Detection of E. coli using SERS active filters with silver nanorod array”, Sensors Actuators B Chem; 191, pp. 485-490, 2014

J.J. Castillo, T. Rindzevicius, K. Wu et al. “Silver-capped silicon nanopillar platforms for adsorption studies of folic acid using surface enhanced Raman spectroscopy and density functional theory”, J Raman Spect; 46, pp. 1087-1094, 2015.

J.J. Castillo, T. Rindzevicius et al., “Adsorption and Vibrational Study of Folic Acid on Gold Nanopillar Structures Using Surface-enhanced Raman Scattering Spectroscopy Regular Paper”, Nanomat Nanotechn; 5: 1-7, 2015.

J. Borrero, Y. Chen, G. Dunny, Y. Kaznessis, “Modified Lactic Acid Bacteria Detect and Inhibit Multiresistant Enterococci”, ACS Synthet. Biol.; 4, pp. 299-306, 2015.

C. Kotanen, L. Martínez, R. Álvarez, J. Simecek, “Surface enhanced Raman scattering spectroscopy for detection and identification of microbial pathogens isolated from human serum”. Sens. Biosens. Res.; 8, pp. 20-26, 2016.

H. Zhou, D. Yang, N.P. Ivleva et al., “SERS Detection of Bacteria in Water by in Situ Coating with Ag Nanoparticles”, Anal Chem; 86, pp. 1525-1536, 2014.

D. Graham, K. Faulds, “Chemical Science Simultaneous detection and quanti fi cation of three bacterial meningitis pathogens by SERS”. Chem Sci; 5, pp. 1030-1040, 2014.

B. Allegranzi, Report on the Burden of Endemic Health Care-Associated Infection Worldwide Clean Care is Safer Care. WHO 2011, pp. 1-40.

Secretaría de Salud de Bogotá, Sistema de vigilancia epidemiológica de infecciones intrahospitalarias. Secretaria de Salud Distrital de Bogotá, 1984; pp. 1-35

K. Kneipp, H. Kneipp, B. Kartha et al., “Detection and identification of a single DNA base molecule using surface-enhanced Raman”, Phys Rev E; 57, pp. 6281-6290, 1998.

M. Culha, M. Kahraman, C. Dilek, “Rapid identification of bacteria and yeast using surface-enhanced Raman scattering”, Surf Interf Anal; 42, pp. 462-465, 2010.

H. Zhou, D. Yang, N. Ivleva, N. Mircescu, R. Niessner, C. Haish, “SERS Detection of Bacteria in Water by in Situ Coating with Ag Nanoparticles”, Anal Chem; 86, pp. 1525-1533, 2014.

R.M. Jarvis, R. Goodacre, “Discrimination of Bacteria Using Surface-Enhanced Raman Spectroscopy”, Anal Chem; 76, pp. 40-47, 2004.

G. McNay, D. Eustace, W.E. Smith et al., “Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications”, Appl Spectrosc; 65, pp. 825-37, 2011.

I.S. Patel, W.R. Premasiri, D.T. Moir, L.D. Ziegler, “Barcoding bacterial cells: a SERS-based methodology for pathogen identification”, J Raman Spect; 39, pp. 1660-1672, 2008.

Y. Wang, K. Lee, J. Irudayaraj, “Silver Nanosphere SERS Probes for Sensitive Identification of Pathogens”, J Phys Chem C; 114, pp. 16122-16128, 2010.
How to Cite
Castillo-León, J., Rincón-Orozco, B., & Cabanzo-Hernández, R. (1). Silver nanostructured platforms for detecting Escherichia coli through Raman scattering spectroscopy “Proof of concept”. ITECKNE, 14(2), 164-169. https://doi.org/https://doi.org/10.15332/iteckne.v14i2.1771
Section
Research and Innovation Articles