Page Header
DOI: https://doi.org/10.15332/iteckne.v14i1.1632

Marco de referencia para la planificación de generación distribuida en zonas no interconectadas

Framework for distributed generation planning troughout nonconnected areas

Gabriel Jaime Correa-Henao, Juan Carlos Rojas-Zerpa

Abstract - 357 | PDF (Español (España)) - 101


Abstract(es_ES)

Se presenta una propuesta metodológica del diseño, desarrollo y aplicación para el apoyo a la toma de decisiones multicriterio (MCDM, por sus siglas en inglés) que permita planear un sistema de suministro eléctrico, teniendo en cuenta variables de impulso al desarrollo local de pequeñas poblaciones rurales o remotas, específicamente a través de un caso de estudio en los Llanos Orientales de Colombia. Para el efecto, se propone el uso de dos técnicas bien documentadas, como el Proceso Analítico Jerárquico (AHP, por sus siglas en inglés) y el método VIKOR, al tiempo que se aporta un cambio de paradigma en la planificación de los sistemas de generación distribuida, considerando para ello la inclusión integral de aspectos técnicos, económicos, sociales y ambientales. En esta propuesta, los decisores pueden observar comparativamente el comportamiento de los sistemas de suministro eléctrico, ya sea mediante la generación distribuida o mediante la extensión de las redes eléctricas.

Keywords(es_ES)

Generación distribuida; toma de decisiones; análisis multiobjetivo; AHP; VIKOR

Abstract(en_US)

The authors present a suitable methodology to support designing, development and implementation in a Multicriteria Decision Making (MCDM) environment. This is done in order to perform planning of a power supply system that takes into account variables that boost local development of small rural or remote areas, specifically through a case study in the eastern plains of Colombia. The use of two well-known techniques such as Analytic Hierarchy Process (AHP) and VIKOR techniques are applied as a new method to develop planning of distributed generation systems. Such method considers the inclusion of technical, economic, social and environmental aspects in order to guide planning tasks. In this proposal, decision makers are able to compare the performing of power systems, by either investing in electric distribution grid extension or by installing distributed generation electric systems.

Keywords(en_US)

Distributed generation; decision making; multiobjective analysis; AHP; VIKOR

References


World_Bank, Designing Sustainable Off-Grid Rural Electrification Projects: Principles and Practices, Operationa. Washington DC (EEUU): World Bank, 2008.

Fenercom, “Boletín Energético N°5”, en I Congreso de Generación Distribuida, 2009, p. 12p.

G. J. Correa-Henao y J. M. Yusta-Loyo, Seguridad en Infraestructuras de Transporte de Electricidad, 1.a ed. Saarbrücken, Alemania: Editorial Académica Española, 2014.

G. J. Correa-Henao y J. M. Yusta-Loyo, “Seguridad Energética y Protección de Infraestructuras Críticas”, Lámpsakos, vol. 1, n.o 10, pp. 92-108, 2013.

T. Saaty, The analytic hierarchy process: planning, priority setting, resource allocation. New York, NY (USA): McGraw-Hill International Book Co., 1980.

G.-H. Tzeng, M.-H. Teng, J.-J. Chen, y S. Opricovic, “Multicriteria selection for a restaurant location in Taipei”, Int. J. Hosp. Manag., vol. 21, n.o 2, pp. 171-187, jun. 2002.

S. Opricović, “Dynamic compromise programming with application to water reservoir management”, Agric. Syst., vol. 41, n.o 3, pp. 335-347, 1993.

G.-H. Tzeng, C.-W. Lin, y S. Opricovic, “Multi-criteria analysis of alternative-fuel buses for public transportation”, Energy Policy, vol. 33, n.o 11, pp. 1373-1383, jul. 2005. 86 ITECKNE Vol. 14 Número 1 • ISSN 1692-1798 • ISSN Digital 2339 - 3483 • junio 2017 • 70 - 87

P. L. Yu y M. Zeleny, “The set of all nondominated solutions in linear cases and a multicriteria simplex method”, J. Math. Anal. Appl., vol. 49, n.o 2, pp. 430-468, feb. 1975.

G. Colson y M. Zeleny, “Multicriterion concept of risk under incomplete information”, Comput. Oper. Res., vol. 7, n.o 1–2, pp. 125-141, 1980.

M. Zeleny, “The pros and cons of goal programming”, Comput. Oper. Res., vol. 8, n.o 4, pp. 357-359, 1981.

R. Dufo, “iHOGA: Sistemas Híbridos Renovables”, 2015. [En línea]. Disponible en: http://bit.ly/1I2WBsr.

J. M. Mantilla-González, C. A. Duque-Daza, y C. H. Galeano- Urueña, “Análisis del esquema de generación distribuida como una opción para el sistema eléctrico colombiano”, Rev. Fac. Ing. Univ. Antioquia, n.o 44, pp. 97-110, 2008.

Á. A. Bayod-Rújula, Sistemas fotovoltaicos. Zaragoza, España: Universidad de Zaragoza, 2009.

EIA, Distributed generation in liberalized electricity markets. OECD/IEA. Paris, Francia, 2002.

O. Pol, P. Palensky, C. Kuh, K. Leutgöb, J. Page, y G. Zucker, “Integration of centralized energy monitoring specifications into the planning process of a new urban development area: a step towards smart cities”, e i Elektrotechnik und Informationstechnik, vol. 129, n.o 4, pp. 258-264, 2012.

K. Alanne y A. Saari, “Distributed energy generation and sustainable development”, Renew. Sustain. Energy Rev., vol. 10, n.o 6, pp. 539-558, dic. 2006.

J. C. Rojas-Zerpa y J. M. Yusta-Loyo, “Methodologies, technologies and applications for electric supply planning in rural remote areas”, Energy Sustain. Dev., vol.20, n.o 0, pp. 66-76, 2014.

J. C. Rojas-Zerpa, “Planificación del suministro eléctrico en áreas rurales de los países en vías de desarrollo: un marco de referencia para la toma de decisiones”, Universidad de Zaragoza, 2013.

Á. A. Bayod-Rújula y N. Dia-Khalidou, “Application of a multi-criteria analysis for the selection of the most suitable energy source and water desalination system in Mauritania”, Energy Policy, vol. 38, n.o 1, pp. 99-115, 2010.

T. Ackermann, G. Andersson, y L. Söder, “Overview of government and market driven programs for the promotion of renewable power generation”, Renew. Energy, vol. 22, n.o 1-3, pp. 197-204, ene. 2001.

G. Pepermans, J. Driesen, D. Haeseldonckx, R. Belmans, y W. D’haeseleer, “Distributed generation: definition, benefits and issues”, Energy Policy, vol. 33, n.o 6, pp. 787-798, abr. 2005.

G. J. Correa-Henao, Metodologías para la toma de decisiones apoyadas en modelos difusos. Saarbrücken, Alemania: Editorial Académica Española, 2015.

R. B. Hiremath, S. Shikha, y N. H. Ravindranath, “Decentralized energy planning; modeling and application—a review”, Renew. Sustain. Energy Rev., vol. 11, n.o 5, pp. 729-752, jun. 2007.

F. Henao, J. A. Cherni, P. Jaramillo, y I. Dyner, “A multicriteria approach to sustainable energy supply for the rural poor”, Eur. J. Oper. Res., vol. 218, n.o 3, pp. 801-809, may 2012.

J. C. Rojas-Zerpa y J. M. Yusta, “Application of multicriteria decision methods for electric supply planning in rural and remote areas”, Renew. Sustain. Energy Rev., vol. 52, pp. 557-571, dic. 2015.

T. L. Saaty, “Highlights and critical points in the theory and application of the Analytic Hierarchy Process”, Eur. J. Oper. Res., vol. 74, n.o 3, pp. 426-447, 1994.

Expert_Choice_Team, “Expertchoice for Collaborative Decision Making”, Expert Choice Case Studies, 2014. [En línea]. Disponible en: http://expertchoice.com/. [Accedido: 01-nov-2015].

G.-N. Zhu, J. Hu, J. Qi, C.-C. Gu, y Y.-H. Peng, “An integrated AHP and VIKOR for design concept evaluation based on rough number”, Adv. Eng. Informatics, vol.29, n.o 3, pp. 408-418, ago. 2015.

Y. Zhou, K. Maumbe, J. Deng, y S. W. Selin, “Resourcebased destination competitiveness evaluation using a hybrid analytic hierarchy process (AHP): The case study of West Virginia”, Tour. Manag. Perspect., vol. 15, pp. 72-80, jul. 2015.

A. Jahan, F. Mustapha, M. Y. Ismail, S. M. Sapuan, y M. Bahraminasab, “A comprehensive VIKOR method for material selection”, Mater. Des., vol. 32, n.o 3, pp.1215-1221, mar. 2011.

N. K. Dia, Á. A. Bayod-Rújula, N. Mamoudou, C. S. Ethmane, y B. O. Bilal, “Field study of multifunctional platforms in Mauritania”, Energy Sustain. Dev., vol. 23, n.o 0, pp. 130-140, 2014.

OECD/IEA, “Energy poverty: How to make modern energy access universal?”, Paris, Francia, 2010.

J. A. Domínguez-Navarro, J. L. Bernal-Agustín, y R. Dufo-López, “Data mining methodology for disaggregation of load demand”, Electr. Power Syst. Res., vol.79, n.o 10, pp. 1393-1399, oct. 2009.

J. L. Bernal-Agustín y R. Dufo-López, “Simulation and optimization of stand-alone hybrid renewable energy systems”, Renew. Sustain. Energy Rev., vol. 13, n.o 8, pp. 2111-2118, oct. 2009. Marco de referencia para la planificación de generación distribuida en zonas no interconectadas – Correa, Rojas 87

S. M. Shaahid y M. A. Elhadidy, “Economic analysis of hybrid photovoltaic–diesel–battery power systems for residential loads in hot regions—A step to clean future”, Renew. Sustain. Energy Rev., vol. 12, n.o 2, pp.488-503, 2008.

HOMER, “Homer Energy Software”, 2015. [En línea]. Disponible en: http://www.homerenergy.com/. [Accedido: 01-may-2015].

Steca, “Catálogo de Reguladores e Inversores”, 2014, p. 133.

ESMAP, “Technical and economic assessment of offgrid, Mini-grid and grid electrification technologies”, en ESMAP technical paper 121/07, 2007, p. 324.

IDEAM, “Atlas de Radiación Solar en Colombia”, Cap.2 y 3. Instituto de Meteorología, Hidrología y Estudios Ambientales- IDEAM, Unidad de Planeación Minero-Energética – UPME, 2005. [En línea]. Disponible en: http://intranet.ideam.gov.co:8080/openbiblio/Bvirtual/019649/2-RadiacionSolar.pdf. [Accedido:01-jul-2015].

ISAGEN S.A., S. Botero-Botero, I. Dyner, J. D. Velásquez-Henao, C. J. Franco-Cardona, Y. Benavédes, G. J. Correa-Henao, y J. F. Franco-Barrera, Fuentes no renovables de generación de electricidad. Medellín (Colombia): Universidad Nacional de Colombia, 2005


Abstract - 357 | PDF (Español (España)) - 101

Refbacks

  • There are currently no refbacks.
ISSN: 1692-1798 (impreso)
ISSN: 2393-3483 (en línea)



Imagen