Effect of the remaining glycerol in the metabolites deposition for the chlorella vulgaris utex 1803, through inmobilization techniques

  • Ana María Ardila-Álvarez Ingeniera Química, Universidad Industrial de Santander Bucaramanga
  • Viviana Quintero-Dallos M.Sc. Ingeniería Química, Universidad Industrial de Santander Bucaramanga
  • Vanessa Edith Blanco-Suárez Ingeniera Química, Universidad Industrial de Santander Bucaramanga
  • Susan Stepahny Villamizar-Sánchez Ingeniera Química, Universidad Industrial de Santander Bucaramanga
  • Andrés Fernando Barajas-Solano Ph.D.(C) Ingeniería Química, Universidad de Santander UDES Bucaramanga
  • Crisóstomo Barajas-Ferreira M.Sc. Ingeniería Química, Universidad Industrial de Santander Bucaramanga
Keywords: Glycerol, inmobilization, chlorella vulgaris.

Abstract

The purpose of the present study was to evaluate the viability of glycerol as carbon source using immobilized algae coupled with a modification on nitrogen (NO3 -) and phosphate (PO4) concentration, for the production of high valuable compounds (carbohydrates, proteins and lipids). The best conditions for carbohydrate accumulation were found by statistical analysis and they were achieved within a 3-5% (v/v) glycerol and an initial concentration of nitrogen source of 0,37 (g/L). Lipid deposition was favored with a concentration of 3% (v/v) glycerol and 0.04 (g/L) nitrogen. On the other hand, proteins were favored with higher concentrations of glycerol (5% v/v) and a concentration of nitrogen similar to that used for carbohydrates

Downloads

Download data is not yet available.

References

[1] P. Spolaore, C. Joannis-Cassan, E. Durán, & A. Isambert, “Commercial applications of microalgae”. Journal of bioscience and bioengineering, 101(2), pp. 87- 96, 2006.

[2] J. V. Haveren, E. L. Scott, and J. Sanders, “Bulk chemicals from biomass”. Biofuels, Bioproductos & Biorefining. vol 2, pp. 41-57, 2008.

[3] L. Christenson, & R. Sims, “Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts”. Biotechnology Advances, vol. 29, No. 6. pp. 686-702, 2011.

[4] N. Shifrin, & S. Chisholm, “Phytoplankton Lipids: Interspecific Differences and Effects of Nitrate, Silicate and Lightdark Cycles”. J. Phycol., vol 17, pp. 372-384, 1981.

[5] O. Zacheus, E. Iivanainen, T. Nissinen, M. Lehtola, & P. Martikainen, “Bacterial Biofilm Formation on Polyvinylchloride, Polyethylene And Stain Less Steel Exposed Too Zonated Water”. Water Res., vol. 34. pp. 63-70, 2000.

[6] E. Leenen, V. Dos Santos, K. Grolle, J. Tramper, R. Wijffels, “Characteristics of and selection criteria for support materials for cell immobilization in wastewater treatment”. Water Res., 12, pp. 2985-2996, 1996.

[7] Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, A. Darzins, “Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advaces”. Plant J., 54, pp. 621-639, 2008.

[8] C. Zamalloa, N. Boon, & W. Verstraete, “Decentralized two-stage sewage treatment by chemical–biological flocculation combined with microalgae biofilm for nutrient immobilization in a roof installed parallel plate reactor”. Bioresource technology, 130, pp. 152-160, 2013.

[9] C. H. Hsieh, & W. T. Wu, “Cultivation of microalgae for oil production with a cultivation strategy of urea limitation”. Bioresource technology, 100(17), pp. 3921-3926, 2009.

[10] N. Patil, Y. Veeranagouda, M. VIjaykumar, S. Nayak, T. Karegoudar, “Enhanced and potential degradation of o-phthalate by Bacillus sp. Immobilized cells in alginate and polyurethane”. International Journal of Biodetergents Biodegradable, 57, pp. 82-87, 1996.

[11] Y. Liang, N. Sarkany, Y. Cui, “Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions”. Biotechnol Lett., 31, pp. 1043-1049, 2009.

[12] C. I. Domínguez, Z. Arbib, F. Chinalia, S. C. Oliveira, J. Perales, P. Almeida, J. I. Druzian, I. Andrade, “From waste to energy: Microalgae production in wastewater and glycerol”. Applied Energy, 109, pp. 283-290, 2013.

[13] L. S. Clesceri, A. E. Greenberg, A. D. Eaton, Standard methods for examination of water and wastewater. American Public Health Association, 20th ed. Washington, D.C., 1999.

[14] M. Dubois, K. Gilles, P. Rebers, F. Smith. “Colorimetric Method for Determination of Sugars and Related Substances”. Analytical Chemistry, 3(28), pp. 350-356, 1956.

[15] Y. Chen, S. Vaidyanathan, “A simple, reproducible and sensitive spectrophotometric method to estimate microalgal lipids”. Analytica Chimica Acta, 724, pp. 67-72, 2012.

[16] Y. Chen, & S. Vaidyanathan, “Simultaneous assay of pigments, carbohydrates, proteins and lipids in microalgae”. Analytica chimica acta, 776, pp. 31-40, 2013.

[17] O. H. Lowry, N. J. Rosenbrough, A. L. Farr, R. J. Randall, “Protein measurement with the Folin Phenol Reagent”. Journ. Biol. Chem, 193, pp. 65-275, 1951. [18] C. R. Dorey, & J. A. Draves. Quantitative analysis laboratory: a new approach. Laboratory Manual. Department of Chemistry, University of Central Arkansas, Conway, AR. 1998.

[19] I. Brányiková, B. Maršálková, J. Doucha, T. Brányik, K. Bišová, V. Zachleder, M.Vítová, “Microalgae novel highly efficient starch producers”. Biotechnology Bioengineering, 108 (4), pp. 766-776, 2011.

[20] G. Belotti, M. Bravi, B. De Caprariis, P. De Filippis, M. Scarsella, “Effect of Nitrogen and Phosphorus Starvations on Chlorella vulgaris Lipids Productivity and Quality under Different Trophic Regimens for Biodiesel Production”. American Journal of Plant Sciences, 4, pp. 44-51, 2013.

[21] [21] N. S. Shifrin, S. W. Chisholm, “Phytoplankton lipids: Interspecific differences and effects of nitrate, silicate and lightdark cycles”. J. Phycol., 17, pp. 372-384, 1981.

[22] S. Silveira Martins, C. Martins, L. Cidrao, S. Santaella, “Immobilization of microbialcells: A promising tool for treatment of toxic pollutants in industrial wastewater”. African Journal of Biotechnology, 12 (28), pp. 4412-4418, 2013.

[23] L. Estévez, A. Barajas, C. Barajas, V. Kafarov, “Improvement of Lipid Productivity on Chlorella vulgaris Using Waste Glycerol and Sodium Acetate”. Ciencia, Tecnología y Futuro, 5 (2), pp. 113-126, 2013.

[24] T. Heredia-Arroyo, W. Wei, R. Ruan, & B. Hu, “Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials”. Biomass and Bioenergy, 35 (5), pp. 2245-2253, 2011.

[25] E. W. Becker, “Microalgae as a source of protein”. Biotechnological Advances, 25, pp. 207-210, 2007.
Published
2017-03-27
How to Cite
Ardila-Álvarez, A., Quintero-Dallos, V., Blanco-Suárez, V., Villamizar-Sánchez, S., Barajas-Solano, A., & Barajas-Ferreira, C. (2017). Effect of the remaining glycerol in the metabolites deposition for the chlorella vulgaris utex 1803, through inmobilization techniques. ITECKNE, 14(1), 17 - 23. https://doi.org/https://doi.org/10.15332/iteckne.v14i1.1626
Section
Research and Innovation Articles