Evaluation of the performance of a network LAN over powerline communications for the transmission of VOIP

  • Juan Carlos Vesga-Ferreira M. Sc. Telecomunicaciones Universidad Nacional Abierta y a Distancia
  • Gerardo Granados-Acuña M. Sc. Telemática Universidad Nacional Abierta y a Distancia
  • José Antonio Vesga-Barrera M. Sc. Potencia Eléctrica Corporación Universitaria de Ciencia y Desarrollo
Keywords: ANOVA, experimental design, HomePlug AV, powerline communications, network performance, QoS

Abstract

The quality of service (QoS) is defined as the ability  of  a  network  to  manage  the  traffic demand  according to the class of service, in order to meet the expectations of the user and in accordance with a clearly established  metrics,  which  applies  even  for  networks with  PLC  technology.  Faced  with  the  need  to  optimize QoS  in  IP  networks,  a  experimental  design  type  mixed factorial is presented to evaluate the performance of a PLC network to the Voice over IP transmission, in terms of throughput, latency and jitter, in a residential environment and with the use of PLC adapters supported in the HomePlug AV standard. The result of the experiment not only  establishes  the  degree  of  influence  from  the  statistical  point  of  view  that  you  can  produce  the  type  of codec  used  or  the  number  of  active  stations,  but  that allows you to identify which are the most recommended codecs  to  transmit  voice  over  IP,  improving  the performance  of  the  network  and  ensuring  adequate  levels  of QoS.

Downloads

Download data is not yet available.

References

[1] J. Ekanayake, N. Jenkins, and K. Liyanage, Smart grid: technology and applications, 1a ed. West Sussex, Inglaterra: John Wiley & Sons, 2012.

[2] C. Jin and T. Kunz, “Smart home networking: Combining wireless and powerline networking,” in 2011 7th International Wireless Communications and Mobile Computing Conference, 2011, pp. 1276-1281.

[3] N. Anatory, J. & Theethayi, Broadband Power-Line Communication Systems: Theory and Applications., 1a ed. Southampton, England: WIT Press, 2010.

[4] H. Latchman, K. Srinivas, L. Yonge, and S. Gavette, Homeplug AV and IEEE 1901: A Handbook for PLC Designers and Users, 1a ed. New Jersey, USA: Wiley-IEEE Press, 2013.

[5] L. D. Andreou G., Manitsas E., “Finite element characterization of LV power distribution lines for high frequency communications signals,” Proc. 7th Int. Symp. Power-Line Commun. its Appl., pp. 109-119, 2003.

[6] G. S. Banwell T., “A new approach to the modelling of the transfer function of the power line channel,” Proc. 5th Int. Symp. Power-Line Commun. its Appl., pp. 319-324, 2009.

[7] M. Zimmermann and K. Dostert, “A multipath model for the powerline channel,” IEEE Trans. Commun., vol. 50, no. 4, pp. 553-559, Apr. 2002.

[8] B. G., “System architecture for power-line communication and consequences for modulation and multiple access,” 7 th Int. Symp. Power-Line Commun. its Appl., 2003.

[9] H. Hrasnica, A. Haidine, and R. Lehnert, Broadband Powerline Communications Networks Network Design, 1a ed. West Sussex, Inglaterra: John Wiley & Sons, 2004.

[10] Ministerio de las Tecnologías de la Información y Comunicaciones de Colombia, “Plan Nacional de Tecnologías de la Información y las Comunicaciones 2008-2019,” 2008.

[11] Ministerio de las Tecnologías de la Información y Comunicaciones de Colombia, “Plan Vive Digital Colombia. Documento Vivo del Plan,” 2011.

[12] Departamento Nacional de Planeación, “Vision Colombia II Centenario 2019. Resumen Ejecutivo,” 2005.

[13] P. J. Piñero-Escuer, J. Malgosa-Sanahuja, and P. Manzanares-Lopez, “Homeplug-AV CSMA/CA Evaluation in a Real In-Building Scenario,” IEEE Commun. Lett., no. June, pp. 683-685, 2011.

[14] FCC, “Federal Communications Commission.” [Online]. Available: http://www.fcc.gov/.

[15] N. Wittenberg, Understanding voice over IP technology, 1a ed. New York, USA: Delmar Cengage Learning, 2009.

[16] UIT-T, “Recommendation G.711: Pulse Code Modulation (PCM) of voice frequencies,” 1988.

[17] UIT-T, “Recommendation G.723.1: Dual rate speech coder for multimedia communications transmitting at 5.3 and 6.3 kbit/s,” 2006.

[18] UIT-T, “Recommendation G.729: Coding of speech at 8 kbits using Conjugate- Structure Algebraic-Code-Excited Linear-Prediction (CS-ACELP),” 2007.

[19] A. Tanenbaum and D. Wheteral, Computer Networks, 5a ed. Boston, USA: Pearson-Prentice Hall, 2011.

[20] C. Demichelis and P. Chimento, “RFC 3393 IP packet delay variationmetric for IP performance metrics (IPPM),” Status Propos. Stand., p. 21, 2002.

[21] S. . P. A. Avallone, “D-ITG Distributed Internet Traffic Generator.” [Online]. Available: http://traffic.comics. unina.it/software/ITG/.

[22] A. Botta, A. Dainotti, and A. Pescapé, “A tool for the generation of realistic network workload for emerging networking scenarios,” Comput. Networks, vol. 56, no. 15, pp. 3531-3547, Oct. 2012.

[23] H. Gutiérrez, Análisis y diseño de experimentos, 1a ed. México D.F., México: McGraw-Hill, 2008.

[24] P. Morales Vallejo, “Tamaño necesario de la muestra : ¿ Cuántos sujetos necesitamos ?,” p. 24, 2012.

[25] D. Montgomery, Diseño y Análisis de Experimentos, 2a ed. México D.F., México: Limusa Wiley, 2004.

[26] R. Martínez and N. Martínez, Diseño de Experimentos. Análisis de datos estándar y no estándar, 1 ed. Bogotá, D.C., 1997.

[27] W. Moreno, Aplicaciones al diseño y análisis de experimentos. Bucaramanga, 2002.

[28] R. Kuelh, Diseño de experimentos: principios estadísticos para el análisis y diseño de investigaciones, 2nd. ed. Thompson, 2001.

[29] Cisco, “Quality of service for voice over IP,” San Francisco, 2001.
Published
2016-04-04
How to Cite
Vesga-Ferreira, J., Granados-Acuña, G., & Vesga-Barrera, J. (2016). Evaluation of the performance of a network LAN over powerline communications for the transmission of VOIP. ITECKNE, 13(1), 83-95. https://doi.org/https://doi.org/10.15332/iteckne.v13i1.1385
Section
Research and Innovation Articles